Frederick Vine

Last updated

Frederick Vine
Frederick Vine.png
Frederick Vine (right) and Drummond Matthews, 1981
Born (1939-06-17) 17 June 1939 (age 84)
Chiswick, London, United Kingdom
Nationality British
Education Latymer Upper School
Alma mater St John's College, Cambridge
SpouseSusan 'Sue' Vine (née McCall)
Awards Arthur L. Day Medal (1968)
Bigsby Medal (1971)
Chapman Medal (1973)
FRS (1974)
Appleton Medal and Prize (1977)
Balzan Prize (1981)
Hughes Medal (1982)
Prestwich Medal (2007)
Scientific career
Fields Marine Geologist
Geophysicist
Institutions Princeton University
University of East Anglia
Website www.uea.ac.uk/environmental-sciences/people/profile/f-vine#overviewTab

Frederick John Vine FRS (born 17 June 1939) is an English marine geologist and geophysicist. He made key contributions to the theory of plate tectonics, helping to show that the seafloor spreads from mid-ocean ridges with a symmetrical pattern of magnetic reversals in the basalt rocks on either side.

Contents

Early life

Vine was born in Chiswick, [1] London, and educated at Latymer Upper School and St John's College, Cambridge [2] where he studied Natural Sciences (BA, 1962) and marine geophysics (PhD, 1965). [3] He married Susan 'Sue' Vine (née McCall), who worked as a research assistant for Drummond Matthews in the Department of Geodesy and Geophysics, University of Cambridge, contributing to the development of the sea-floor spreading hypothesis associated with Matthews and her husband. [4]

Plate Tectonics

The observed magnetic profile for the sea floor around a mid-oceanic ridge agrees closely with the profile predicted by the Vine-Matthews-Morley hypothesis. East Pacific Rise seafloor magnetic profile - observed vs calculated.png
The observed magnetic profile for the sea floor around a mid-oceanic ridge agrees closely with the profile predicted by the Vine–Matthews–Morley hypothesis.

Vine's PhD thesis was on 'Magnetism in the Seafloor' and supervised by Drummond Matthews. Having met Harry Hess he was aware of sea floor spreading, where the ocean bed acts as a 'conveyor belt' moving away from the central ridge. [5] Vine's work, with that of Drummond Matthews and Lawrence Morley of the Geological Survey of Canada, helped put the variations in the magnetic properties of the ocean crust into context in what is now known as the Vine–Matthews–Morley hypothesis. Specifically they supported Dietz's (Nature 1961) idea that sea floor spreading was occurring at mid-ocean ridges. Vine and Matthews showed that basalt created at a mid-ocean ridge records earth's current magnetic field polarity (and strength), thus turning Hess's theoretical 'conveyor belt' into a 'tape recorder'. [5] Furthermore, they showed that magnetic reversals 'frozen' into these rocks, as suggested by Allan Cox (Nature 1963), [6] can be seen as parallel strips as you travel perpendicularly away from the ridge crest. [5]

Academic career

Vine worked with E. M. Moores on the Ophiolite in the Troodos mountains of southern Cyprus. He worked with R. A. Livermore and A. G. Smith on the history of the Earth's magnetic field. [2] He worked on the electrical conductivity of rocks from the lower continental crust with R. G. Ross and P. W. J. Glover, which culminated in 1992 with measurements of the electrical conductivity of graphite-rich amphibolites and granulites at lower crustal temperatures and pressures with a full water saturation and pore fluid pressure [7] and graphite-free [8]

In 1967, Vine became assistant professor of geology and geophysics at Princeton University. In 1970 he moved to the School of Environmental Sciences at the University of East Anglia, becoming professor there in 1974. He served as dean from 1977 to 1980, and again from 1993 to 1998. After 1998, he was a professorial fellow of the University of East Anglia. [2] and then in 2008 he became an emeritus professor there. [3]

Honours

Vine's honours include:

Publications

See also

Related Research Articles

<span class="mw-page-title-main">Plate tectonics</span> Movement of Earths lithosphere

Plate tectonics is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since about 3.4 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s.

<span class="mw-page-title-main">Seafloor spreading</span> Geological process at mid-ocean ridges

Seafloor spreading, or seafloor spread, is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge.

<span class="mw-page-title-main">Earth's magnetic field</span> Magnetic field that extends from the Earths outer and inner core to where it meets the solar wind

Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of a mixture of molten iron and nickel in Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamo.

<span class="mw-page-title-main">Ophiolite</span> Uplifted and exposed oceanic crust

An ophiolite is a section of Earth's oceanic crust and the underlying upper mantle that has been uplifted and exposed, and often emplaced onto continental crustal rocks.

<span class="mw-page-title-main">Divergent boundary</span> Linear feature that exists between two tectonic plates that are moving away from each other

In plate tectonics, a divergent boundary or divergent plate boundary is a linear feature that exists between two tectonic plates that are moving away from each other. Divergent boundaries within continents initially produce rifts, which eventually become rift valleys. Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges.

<span class="mw-page-title-main">John Tuzo Wilson</span> Canadian geologist (1908–1993)

John Tuzo Wilson was a Canadian geophysicist and geologist who achieved worldwide acclaim for his contributions to the theory of plate tectonics.

<span class="mw-page-title-main">Oceanic crust</span> Uppermost layer of the oceanic portion of a tectonic plate

Oceanic crust is the uppermost layer of the oceanic portion of the tectonic plates. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic cumulates. The crust overlies the rigid uppermost layer of the mantle. The crust and the rigid upper mantle layer together constitute oceanic lithosphere.

<span class="mw-page-title-main">Eclogite</span> Metamorphic rock formed under high pressure

Eclogite is a metamorphic rock containing garnet (almandine-pyrope) hosted in a matrix of sodium-rich pyroxene (omphacite). Accessory minerals include kyanite, rutile, quartz, lawsonite, coesite, amphibole, phengite, paragonite, zoisite, dolomite, corundum and, rarely, diamond. The chemistry of primary and accessory minerals is used to classify three types of eclogite. The broad range of eclogitic compositions has led to a longstanding debate on the origin of eclogite xenoliths as subducted, altered oceanic crust.

<span class="mw-page-title-main">Mid-ocean ridge</span> Basaltic underwater mountain system formed by plate tectonic spreading

A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about 2,600 meters (8,500 ft) and rises about 2,000 meters (6,600 ft) above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a divergent plate boundary. The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin.

Allan Verne Cox was an American geophysicist. His work on dating geomagnetic reversals, with Richard Doell and Brent Dalrymple, made a major contribution to the theory of plate tectonics. Allan Cox won numerous awards, including the prestigious Vetlesen Prize, and was the president of the American Geophysical Union. He was the author of over a hundred scientific papers, and the author or editor of two books on plate tectonics. On January 27, 1987, Cox died in an apparent suicide.

A geomagnetic reversal is a change in a planet's magnetic field such that the positions of magnetic north and magnetic south are interchanged. The Earth's field has alternated between periods of normal polarity, in which the predominant direction of the field was the same as the present direction, and reverse polarity, in which it was the opposite. These periods are called chrons.

<span class="mw-page-title-main">Drummond Matthews</span> British marine geologist and geophysicist

Drummond Hoyle Matthews FRS, known as "Drum", was a British marine geologist and geophysicist and a key contributor to the theory of plate tectonics. His work, along with that of fellow Briton Fred Vine and Canadian Lawrence Morley, showed how variations in the magnetic properties of rocks forming the ocean floor could be consistent with, and ultimately help confirm, Harry Hammond Hess's 1962 theory of seafloor spreading. In 1989 he was awarded the Geological Society of London's highest honour, the Wollaston Medal.

<span class="mw-page-title-main">Magnetotellurics</span> Electromagnetic geophysical technique

Magnetotellurics (MT) is an electromagnetic geophysical method for inferring the earth's subsurface electrical conductivity from measurements of natural geomagnetic and geoelectric field variation at the Earth's surface.

The Conrad discontinuity corresponds to the sub-horizontal boundary in the continental crust at which the seismic wave velocity increases in a discontinuous way. This boundary is observed in various continental regions at a depth of 15 to 20 km, but it is not found in oceanic regions.

<span class="mw-page-title-main">Vine–Matthews–Morley hypothesis</span> First key scientific test of the seafloor spreading theory of continental drift and plate tectonics

The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics. Its key impact was that it allowed the rates of plate motions at mid-ocean ridges to be computed. It states that the Earth's oceanic crust acts as a recorder of reversals in the geomagnetic field direction as seafloor spreading takes place.

<span class="mw-page-title-main">Samail Ophiolite</span>

The Samail Ophiolite, also known as the Semail Ophiolite, is a large, ancient geological formation in Oman and the United Arab Emirates in the Arabian Peninsula. It is one of the world's largest and best-exposed segments of oceanic crust, made of volcanic rocks and ultramafic rocks from the Earth's upper mantle that was overthrust onto the continental crust. This ophiolite provides insight into the dynamics of oceanic crust formation and the tectonic processes involved in the creation of ocean basins.

<span class="mw-page-title-main">Superswell</span> Large area of anomalously high topography and shallow ocean regions

A superswell is a large area of anomalously high topography and shallow ocean regions. These areas of anomalous topography are byproducts of large upwelling of mantle material from the core–mantle boundary, referred to as superplumes. Two present day superswells have been identified: the African superswell and the South Pacific superswell. In addition to these, the Darwin Rise in the south central Pacific Ocean is thought to be a paleosuperswell, showing evidence of being uplifted compared to surrounding ancient ocean topography.

An upper mantle body is a geological region where upper mantle rocks (peridotite) outcrop on the surface of the Earth.

<span class="mw-page-title-main">Kenneth C. Macdonald</span> American oceanographer (born 1947)

Kenneth Craig Macdonald is an American oceanographer and marine geophysicist born in San Francisco, California in 1947. As of 2018 he is professor emeritus at the Department of Earth Science and the Marine Sciences Institute at the University of California, Santa Barbara (UCSB). His work focuses on the tectonics and geophysics of the global mid-oceanic ridge including its spreading centers and transform faults, two of the three types of plate boundaries central to the theory of plate tectonics. His work has taken him to the north and south Atlantic oceans, the north and south Pacific oceans, the Indian Ocean, the Red Sea and the Sea of Cortez, as well as to the deep seafloor on over 50 dives in the research submersible ALVIN. Macdonald has participated in over 40 deep sea expeditions, and was chief- or co-chief scientist on 31 expeditions.

<span class="mw-page-title-main">Marine geophysics</span>

Marine geophysics is the scientific discipline that employs methods of geophysics to study the world's ocean basins and continental margins, particularly the solid earth beneath the ocean. It shares objectives with marine geology, which uses sedimentological, paleontological, and geochemical methods. Marine geophysical data analyses led to the theories of seafloor spreading and plate tectonics.

References

  1. "Oral History of British Science: Vine, Fred" (PDF). British Library. Archived from the original (PDF) on 10 December 2013. Retrieved 24 May 2013.
  2. 1 2 3 4 5 6 7 8 Profile at Bookrags.com
  3. 1 2 3 4 University of East Angliea – Fred Vine profile [ permanent dead link ]
  4. "Sue Vine". The British Library. Retrieved 16 January 2022.
  5. 1 2 3 BBC / Open University broadcast series Earth Story, Vine interviewed by Professor Aubrey Manning
  6. Cox A, Dalrymple GB, Doell RR (1963). "Geomagnetic Polarity Epochs and Pleistocene Geochronometry". Nature. 198 (4885): 1049. Bibcode:1963Natur.198.1049C. doi:10.1038/1981049a0. S2CID   4180105.
  7. 1 2 Glover, P.W.J.; Vine, F.J. (1992). "Electrical conductivity of carbon bearing granulite at raised temperatures and pressures". Nature. 360 (6406): 723–726. Bibcode:1992Natur.360..723G. doi:10.1038/360723a0. S2CID   4238126.
  8. 1 2 Glover, P.W.J.; Vine, F.J. (1992). "Electrical conductivity of the continental crust". Geophys. Res. Lett. 21 (22): 2357–2360. Bibcode:1994GeoRL..21.2357G. doi:10.1029/94GL01015.
  9. "Award Recipients". WHOI. Retrieved 7 April 2017.
  10. 1 2 Bowler, Sue (5 May 2007). "Earth on a plate". Geoscientist Online. Retrieved 5 December 2013.