Fuel system icing inhibitor

Last updated

Fuel system icing inhibitor (FSII) is an additive to aviation fuels that prevents the formation of ice in fuel lines. FSII is sometimes referred to by the registered, genericized trademark Prist. Jet fuel can contain a small amount of dissolved water that does not appear in droplet form. As an aircraft gains altitude, the temperature drops and the fuel's capacity to hold water is diminished. Dissolved water can separate out and could become a serious problem if it freezes in fuel lines or filters, blocking the flow of fuel and shutting down an engine.

Contents

Chemical composition

Chemically, FSII is an almost pure (99.9%) ethylene glycol monomethyl ether (EGMME, 2-methoxy ethanol, APISOLVE 76, CAS number 109-86-4 ); or since 1994, diethylene glycol monomethyl ether (DEGMME, 2-(2-methoxy ethoxy) ethanol, APITOL 120, methyl carbitol, CAS number 111-77-3 ). [1]

Prior to 1994, Prist was regulated under the MIL-I-27686E standard, which specified use of EGMME, but subsequently came under the MIL-DTL-85470B, with use of less hazardous DEGMME with higher flash point. [2]

FSII was thought to retard the growth of microorganisms eventually present in the fuel, mostly Cladosporium resinae fungi and Pseudomonas aeruginosa bacteria, known as "hydrocarbon utilizing microorganisms" or "HUM bugs", which live in the water-fuel interface of the water droplets, form dark, gel-like mats, and cause microbial corrosion to plastic and rubber parts, but this has since been removed from labelling.

EGMME had been certified as a pesticide by the EPA, but as the requirement changes raised the certification costs, DEGMME has no official pesticide certification. DEGMME is a potent solvent, and at high concentrations can damage fuel bladders and filters. Long-term storage of FSII-fuel mixtures is therefore not recommended.

Anhydrous isopropyl alcohol is sometimes used as an alternative.

Purpose

FSII is an agent that is mixed with jet fuel as it is pumped into the aircraft. The mixture of FSII must be between 0.10% and 0.15% by volume for the additive to work correctly, and the FSII must be distributed evenly throughout the fuel. Simply adding FSII after the fuel has been pumped is therefore not sufficient. As aircraft climbs after takeoff, the temperature drops, and any dissolved water will separate out from the fuel. FSII dissolves itself in water preferentially over the jet fuel, where it then serves to depress the freezing point of water to -43 °C. Since the freezing point of jet fuel itself is usually in this region, the formation of ice is now a minimal concern.

Large aircraft do not require FSII as they are usually equipped with electric fuel line heaters or fuel/oil intercoolers that keep the fuel at an appropriate temperature to prevent icing. However, if the fuel heaters are inoperable, the aircraft may be still be declared fit to fly, if FSII is added to the fuel.

Storage and dispensing

It is extremely important to store FSII properly. Drums containing FSII must be kept clean and dry, since the additive is hygroscopic and can absorb water directly from moisture in the air. Since some brands of FSII are highly toxic, a crew member must wear gloves when handling it undiluted. Many FBOs allow FSII injection to be turned on or off so that one fuel truck can service planes that do require FSII as well as planes that don't. Line crew, however, must be able to deliver FSII when it is needed.

Related Research Articles

<span class="mw-page-title-main">Ethanol</span> Organic compound (CH₃CH₂OH)

Ethanol is an organic compound with the chemical formula CH3CH2OH. It is an alcohol, with its formula also written as C2H5OH, C2H6O or EtOH, where Et stands for ethyl. Ethanol is a volatile, flammable, colorless liquid with a characteristic wine-like odor and pungent taste. It is a psychoactive recreational drug, and the active ingredient in alcoholic drinks.

<span class="mw-page-title-main">Propylene glycol</span> Chemical compound

Propylene glycol (IUPAC name: propane-1,2-diol) is a viscous, colorless liquid, which is nearly odorless but possesses a faintly sweet taste. Its chemical formula is CH3CH(OH)CH2OH. As it contains two alcohol groups, it is classed as a diol. It is miscible with a broad range of solvents, including water, acetone, and chloroform. In general, glycols are non-irritating and have very low volatility.

<span class="mw-page-title-main">Hydraulic fluid</span> Medium to transfer power in hydraulic machinery

A hydraulic fluid or hydraulic liquid is the medium by which power is transferred in hydraulic machinery. Common hydraulic fluids are based on mineral oil or water. Examples of equipment that might use hydraulic fluids are excavators and backhoes, hydraulic brakes, power steering systems, automatic transmissions, garbage trucks, aircraft flight control systems, lifts, and industrial machinery.

An antifreeze is an additive which lowers the freezing point of a water-based liquid. An antifreeze mixture is used to achieve freezing-point depression for cold environments. Common antifreezes also increase the boiling point of the liquid, allowing higher coolant temperature. However, all common antifreeze additives also have lower heat capacities than water, and do reduce water's ability to act as a coolant when added to it.

<span class="mw-page-title-main">Aviation fuel</span> Fuel used to power aircraft

Aviation fuels are petroleum-based fuels, or petroleum and synthetic fuel blends, used to power aircraft. They have more stringent requirements than fuels used for ground use, such as heating and road transport, and contain additives to enhance or maintain properties important to fuel performance or handling. They are kerosene-based for gas turbine-powered aircraft. Piston-engined aircraft use leaded gasoline and those with diesel engines may use jet fuel (kerosene). By 2012, all aircraft operated by the U.S. Air Force had been certified to use a 50-50 blend of kerosene and synthetic fuel derived from coal or natural gas as a way of stabilizing the cost of fuel.

<span class="mw-page-title-main">Jet fuel</span> Type of aviation fuel

Jet fuel or aviation turbine fuel is a type of aviation fuel designed for use in aircraft powered by gas-turbine engines. It is colorless to straw-colored in appearance. The most commonly used fuels for commercial aviation are Jet A and Jet A-1, which are produced to a standardized international specification. The only other jet fuel commonly used in civilian turbine-engine powered aviation is Jet B, which is used for its enhanced cold-weather performance.

Brake fluid is a type of hydraulic fluid used in hydraulic brake and hydraulic clutch applications in automobiles, motorcycles, light trucks, and some bicycles. It is used to transfer force into pressure, and to amplify braking force. It works because liquids are not appreciably compressible.

<span class="mw-page-title-main">Deicing</span> Process of removing ice, snow, or frost from a surface

Deicing is the process of removing snow, ice or frost from a surface. Anti-icing is the application of chemicals that not only deice but also remain on a surface and continue to delay the reformation of ice for a certain period of time, or prevent adhesion of ice to make mechanical removal easier.

Triethylene glycol, TEG, or triglycol is a colorless odorless viscous liquid with molecular formula HOCH2CH2OCH2CH2OCH2CH2OH. It is used as a plasticizer for vinyl polymers. It is also used in air sanitizer products, such as "Oust" or "Clean and Pure". When aerosolized it acts as a disinfectant. Glycols are also used as liquid desiccants for natural gas and in air conditioning systems. It is an additive for hydraulic fluids and brake fluids and is used as a base for "smoke machine" fluid in the entertainment industry.

JP-8, or JP8, is a jet fuel, specified and used widely by the US military. It is specified by MIL-DTL-83133 and British Defence Standard 91-87, and similar to commercial aviation's Jet A-1, but with the addition of corrosion inhibitor and anti-icing additives.

Carburetor heat is a system used in automobile and piston-powered light aircraft engines to prevent or clear carburetor icing. It consists of a moveable flap which draws hot air into the engine intake. The air is drawn from the heat stove, a metal plate around the exhaust manifold.

<span class="mw-page-title-main">Icing conditions</span> Atmospheric conditions that can lead to the formation of ice on aircraft surfaces

In aviation, icing conditions are atmospheric conditions that can lead to the formation of water ice on an aircraft. Ice accretion and accumulation can affect the external surfaces of an aircraft – in which case it is referred to as airframe icing – or the engine, resulting in carburetor icing, air inlet icing or more generically engine icing. These phenomena may possibly but do not necessarily occur together. Both airframe and engine icing have resulted in numerous fatal accidents in aviation history.

<span class="mw-page-title-main">Atmospheric icing</span> Weather condition in which water droplets freeze onto objects they come in contact with

Atmospheric icing occurs in the atmosphere when water droplets suspended in air freeze on objects they come in contact with. It is not the same as freezing rain, which is caused directly by precipitation. Icing conditions can be particularly dangerous to aircraft, as the built-up ice changes the aerodynamics of the flight surfaces and airframe, which can increase the risk of a stall and potentially accidents. For this reason, on-board ice protection systems have been developed on aircraft intended to fly through these conditions.

Glycol ethers are a class of chemical compounds consisting of alkyl ethers that are based on glycols such as ethylene glycol or propylene glycol. They are commonly used as solvents in paints and cleaners. They have good solvent properties while having higher boiling points than the lower-molecular-weight ethers and alcohols.

<span class="mw-page-title-main">Ice protection system</span> Aircraft system which prevents the formation of ice on outside surfaces during flight

In aeronautics, ice protection systems keep atmospheric moisture from accumulating on aircraft surfaces, such as wings, propellers, rotor blades, engine intakes, and environmental control intakes. Ice buildup can change the shape of airfoils and flight control surfaces, degrading control and handling characteristics as well as performance. An anti-icing, de-icing, or ice protection system either prevents formation of ice, or enables the aircraft to shed the ice before it becomes dangerous.

In ground deicing of aircraft, aircraft deicing fluid (ADF), aircraft deicer and anti-icer fluid (ADAF) or aircraft anti-icing fluid (AAF) are commonly used for both commercial and general aviation. Environmental concerns include increased salinity of groundwater where de-icing fluids are discharged into soil, and toxicity to humans and other mammals.

A coalescer is a device which induces coalescence in a medium. They are primarily used to separate emulsions into their components via various processes, operating in reverse to an emulsifier.

<span class="mw-page-title-main">Cooling bath</span> Liquid mixture used to maintain low temperatures

A cooling bath or ice bath, in laboratory chemistry practice, is a liquid mixture which is used to maintain low temperatures, typically between 13 °C and −196 °C. These low temperatures are used to collect liquids after distillation, to remove solvents using a rotary evaporator, or to perform a chemical reaction below room temperature.

Jet Propellant Thermally Stable (JPTS) is a jet fuel originally developed in 1956 for the Lockheed U-2 reconnaissance aircraft.

<span class="mw-page-title-main">Ground deicing of aircraft</span> Ground deicing of aircraft

In aviation, ground deicing of aircraft is the process of removing surface frost, ice or frozen contaminants on aircraft surfaces before an aircraft takes off. This prevents even a small amount of surface frost or ice on aircraft surfaces from severely impacting flight performance. Frozen contaminants on surfaces can also break off in flight, damaging engines or control surfaces.

References

  1. Advance Petro [ dead link ]
  2. "Professional Grade Paint Products - Commercial Paint Thinner Manufacturers | Startex Chemicals".