Fuzzy differential equation

Last updated

Fuzzy differential equation are general concept of ordinary differential equation in mathematics defined as differential inclusion for non-uniform upper hemicontinuity convex set with compactness in fuzzy set. [1] [2] [3]

Contents

for all .

First order fuzzy differential equation

A first order fuzzy differential equation [4] with real constant or variable coefficients

where is a real continuous function and is a fuzzy continuous function

such that .

Linear systems of fuzzy differential equations

A system of equations of the form

where are real functions and are fuzzy functions

Fuzzy partial differential equations

A fuzzy differential equation with partial differential operator is

for all .

Fuzzy fractional differential equation

A fuzzy differential equation with fractional differential operator is

for all where is a rational number.

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

In mathematics, fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set. At the same time, Salii (1965) defined a more general kind of structure called an L-relation, which he studied in an abstract algebraic context. Fuzzy relations, which are now used throughout fuzzy mathematics and have applications in areas such as linguistics, decision-making, and clustering, are special cases of L-relations when L is the unit interval [0, 1].

Fractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form:

In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form:

In mathematics, the Poincaré lemma gives a sufficient condition for a closed differential form to be exact. Precisely, it states that every closed p-form on an open ball in Rn is exact for p with 1 ≤ pn. The lemma was introduced by Henri Poincaré in 1886.

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

<span class="mw-page-title-main">Envelope (mathematics)</span> Curve external to a family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

<span class="mw-page-title-main">Smoothness</span> Number of derivatives of a function (mathematics)

In mathematical analysis, the smoothness of a function is a property measured by the number, called differentiability class, of continuous derivatives it has over its domain.

In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest. The model hyperbolic equation is the wave equation. In one spatial dimension, this is

In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. DDEs are also called time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations with deviating argument, or differential-difference equations. They belong to the class of systems with the functional state, i.e. partial differential equations (PDEs) which are infinite dimensional, as opposed to ordinary differential equations (ODEs) having a finite dimensional state vector. Four points may give a possible explanation of the popularity of DDEs:

  1. Aftereffect is an applied problem: it is well known that, together with the increasing expectations of dynamic performances, engineers need their models to behave more like the real process. Many processes include aftereffect phenomena in their inner dynamics. In addition, actuators, sensors, and communication networks that are now involved in feedback control loops introduce such delays. Finally, besides actual delays, time lags are frequently used to simplify very high order models. Then, the interest for DDEs keeps on growing in all scientific areas and, especially, in control engineering.
  2. Delay systems are still resistant to many classical controllers: one could think that the simplest approach would consist in replacing them by some finite-dimensional approximations. Unfortunately, ignoring effects which are adequately represented by DDEs is not a general alternative: in the best situation, it leads to the same degree of complexity in the control design. In worst cases, it is potentially disastrous in terms of stability and oscillations.
  3. Voluntary introduction of delays can benefit the control system.
  4. In spite of their complexity, DDEs often appear as simple infinite-dimensional models in the very complex area of partial differential equations (PDEs).

In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are real constants C ≥ 0, > 0, such that

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematics, the FBI transform or Fourier–Bros–Iagolnitzer transform is a generalization of the Fourier transform developed by the French mathematical physicists Jacques Bros and Daniel Iagolnitzer in order to characterise the local analyticity of functions on Rn. The transform provides an alternative approach to analytic wave front sets of distributions, developed independently by the Japanese mathematicians Mikio Sato, Masaki Kashiwara and Takahiro Kawai in their approach to microlocal analysis. It can also be used to prove the analyticity of solutions of analytic elliptic partial differential equations as well as a version of the classical uniqueness theorem, strengthening the Cauchy–Kowalevski theorem, due to the Swedish mathematician Erik Albert Holmgren (1872–1943).

Stochastic mechanics is a framework for describing the dynamics of particles that are subjected to an intrinsic random processes as well as various external forces. The framework provides a derivation of the diffusion equations associated to these stochastic particles. It is best known for its derivation of the Schrödinger equation as the Kolmogorov equation for a certain type of conservative diffusion, and for this purpose it is also referred to as stochastic quantum mechanics.

In applied mathematics and mathematical analysis, the fractal derivative or Hausdorff derivative is a non-Newtonian generalization of the derivative dealing with the measurement of fractals, defined in fractal geometry. Fractal derivatives were created for the study of anomalous diffusion, by which traditional approaches fail to factor in the fractal nature of the media. A fractal measure t is scaled according to tα. Such a derivative is local, in contrast to the similarly applied fractional derivative. Fractal calculus is formulated as a generalization of standard calculus.

In stochastic analysis, a rough path is a generalization of the notion of smooth path allowing to construct a robust solution theory for controlled differential equations driven by classically irregular signals, for example a Wiener process. The theory was developed in the 1990s by Terry Lyons. Several accounts of the theory are available.

In mathematics, Katugampola fractional operators are integral operators that generalize the Riemann–Liouville and the Hadamard fractional operators into a unique form. The Katugampola fractional integral generalizes both the Riemann–Liouville fractional integral and the Hadamard fractional integral into a single form and It is also closely related to the Erdelyi–Kober operator that generalizes the Riemann–Liouville fractional integral. Katugampola fractional derivative has been defined using the Katugampola fractional integral and as with any other fractional differential operator, it also extends the possibility of taking real number powers or complex number powers of the integral and differential operators.

Fuzzy differential inclusion is tha culmination of Fuzzy concept and Differential inclusion introduced by Lotfi A. Zadeh which became popular.

References

  1. "Theory of Fuzzy Differential Equations and Inclusions". Routledge & CRC Press. Retrieved 2022-10-15.
  2. Devi, S. Sindu; Ganesan, K. (2019). "Application of linear fuzzy differential equation in day to day life". The 11th National Conference on Mathematical Techniques and Applications. Vol. 2112. Chennai, India. p. 020169. doi:10.1063/1.5112354. S2CID   198460805.{{cite book}}: CS1 maint: location missing publisher (link)
  3. Qiu, Dong; Lu, Chongxia; Zhang, Wei; Zhang, Qinghua; Mu, Chunlai (2014-12-02). "Basic theorems for fuzzy differential equations in the quotient space of fuzzy numbers". Advances in Difference Equations. 2014 (1): 303. doi: 10.1186/1687-1847-2014-303 . ISSN   1687-1847. S2CID   54172371.
  4. Keshavarz, M.; Allahviranloo, T.; Abbasbandy, S.; Modarressi, M. H. (2021). "A Study of Fuzzy Methods for Solving System of Fuzzy Differential Equations". New Mathematics and Natural Computation. 17: 1–27. doi:10.1142/s1793005721500010. S2CID   225373837 . Retrieved 2022-10-15.