GSDMD

Last updated
GSDMD
Identifiers
Aliases GSDMD , DF5L, DFNA5L, GSDMDC1, FKSG10, gasdermin D
External IDs OMIM: 617042 MGI: 1916396 HomoloGene: 12299 GeneCards: GSDMD
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001166237
NM_024736

NM_026960

RefSeq (protein)

NP_001159709
NP_079012

NP_081236

Location (UCSC) Chr 8: 143.55 – 143.56 Mb Chr 15: 75.73 – 75.74 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Gasdermin D (GSDMD, from combination of gastro and dermato, referencing the locations where its family of proteins were originally found to be primarily expressed [5] ) is a protein that in humans is encoded by the GSDMD gene on chromosome 8. [6] It belongs to the gasdermin family which is conserved among vertebrates and comprises six members in humans, GSDMA, GSDMB, GSDMC, GSDMD, GSDME (DFNA5) and DFNB59 (Pejvakin). Members of the gasdermin family are expressed in a variety of cell types including epithelial cells and immune cells. GSDMA, GSDMB, GSDMC, GSDMD and GSDME have been suggested to act as tumour suppressors. [7]

Contents

Structure

Structure of GSDMD C-terminal domain GSDMD-C PyMOL.png
Structure of GSDMD C-terminal domain

The structure of full-length GSDMD consists of two domains, the 31 kDa N-terminal (GSDMD-N) and 22 kDa C-terminal (GSDMD-C) domains, separated by a linker region. GSDMD-C can be divided into four subdomains and is composed of 10 α-helices and two β-strands, forming a compact globular fold. The linker helix contacts the two helix-repeats which consist of four-helix bundles. The middle domain comprises an antiparallel β-strand and a short α-helix. The first flexible loop of GSDMD-C, which is located between GSDMD-N and the linker helix, stretches out and inserts into the GSDMD-N pocket, stabilizing the conformation of the full-length protein. [8] GSDMD-N forms large transmembrane pores composed of 31 to 34 subunits that allow the release of interleukin-1 (IL-1) family cytokines and drive pyroptosis. [9]

Function

Several current studies have revealed that GSDMD serves as a specific substrate of inflammatory caspases (caspase-1, -4, -5 and -11) and as an effector molecule for the lytic and highly inflammatory form of programmed cell death known as pyroptosis. [10] [11] Hence, GSDMD is an essential mediator of host defence against microbial infection and danger signals. The pore-forming activity of the N-terminal cleavage product causes cell swelling and lysis to prevent intracellular pathogens from replicating, and is required for the release of cytoplasmic content such as the inflammatory cytokine interleukin-1β (IL-1β) into the extracellular space to recruit and activate immune cells to the site of infection. [12] GSDMD has an additional potential role as an antimicrobial by binding to cardiolipin (CL) and form pores on bacterial membranes.

Autoinhibition

Under normal conditions, the full-length GSDMD is inactive as the linker loop between the N-terminal and C-terminal domains stabilises the overall conformation of the full-length protein and allows GSDMD-C to fold back on and auto-inhibit GSDMD-N from inducing pyroptosis. [8] Upon interdomain cleavage by inflammatory caspases, the auto-inhibition is relieved and GSDMD-N cytotoxicity is triggered.

Activation

GSDMD can be cleaved and activated by inflammatory caspases through both the canonical and non-canonical pyroptotic pathways. [13]

Canonical inflammasome pathway

Caspase-1, conserved in vertebrates, is involved in the canonical pathway and is activated by canonical inflammasomes such as NLRP3 and NLRC4 inflammasomes, which are multi-protein complexes that are formed upon recognition of specific inflammatory ligands called pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) in the cytosol by NOD-like receptors (NLRs). Examples include bacterial type 3 secretion system (T3SS) rod protein and flagellin, which are potent activators of NLRC4 inflammasome, and bacterial toxin nigericin that activates NLRP3 inflammasome. [11]

Non-canonical inflammasome pathway

Caspase-11 in mice and its human homolog caspase-4 and -5 are involved in the non-canonical pathway and are activated by directly binding cytosolic lipopolysaccharide (LPS) secreted by gram-negative bacteria. [10]

Upon activation of these caspases, GSDMD undergoes proteolytic cleavage at Asp-275, which is sufficient to drive pyroptosis. [11]

Mechanism

Overview of GSDMD activation and pore-forming mechanism Overview of GSDMD1.png
Overview of GSDMD activation and pore-forming mechanism

After the proteolytic cleavage, GSDMD-C remains in the cytosol while the N-terminal cleavage product localises to the plasma membrane by anchoring to membrane lipids. GSDMD-N specifically interacts with phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P] on the inner leaflet of mammalian cell membrane strongly, through charge-charge interactions between the negatively-charged head groups of PI and the positively-charged surface on GSDMD-N exposed after cleavage. [14] Hence, collateral damage to tissues during an infection is minimised as the extracellular outer leaflet lacks PI. Lipid binding allows GSDMD-N to insert into the lipid bilayer and induces high-order oligomerisation within the membrane, forming extensive pores with approximately 16 subunits and an inner diameter of 10–14 nm. [8] The osmotic potential is disrupted by pore formation, leading to cell swelling and lysis, the morphologic hallmarks of pyroptosis. The pores also serve as a protein secretion channel to facilitate the secretion of inflammatory cytokines for rapid innate immune response. [15] GSDMD-N can also undergo cytoplasmic distribution and selectively bind to CL on inner and outer leaflets of intracellular bacterial membranes, or be secreted from pyroptotic cells through the pores into the extracellular milieu to target and kill extracellular bacteria. [16]

Clinical significance

Pyroptosis, which can now be defined as gasdermin-mediated necrotic cell death, acts as an immune defence against infection. Hence, failure to express or cleave GSDMD can block pyroptosis and disrupt the secretion of IL-1β, and eventually unable to ablate the replicative niche of intracellular bacteria. Mutation of GSDMD is associated with various genetic diseases and human cancers, including brain, breast, lung, urinary bladder, cervical, skin, oral cavity, pharynx, colon, liver, cecum, stomach, pancreatic, prostate, oesophageal, head and neck, hematologic, thyroid and uterine cancers. [17] Recently, studies have revealed that downregulation of GSDMD promotes gastric cancer proliferation due to the failure to inactivate ERK 1/2, STAT3 and PI3K/AKT pathways, which are involved in cell survival and tumour progression. [18] However, sepsis and lethal septic shock can result from overactivation of pyroptosis. [19]

Gasdermin D also plays a pivotal role in inflammation related MDS development and progression, gasdermin D knockout significantly extends the survival in MDS mouse model. [20] The critical role of GSDMD in pore formation during pyroptosis provides a new avenue for future drug development for treating inflammatory caspase-associated auto-inflammatory conditions, sepsis and septic shock. [17]

Interactions

GSDMD-N has been shown to interact with: [14]

See also

Related Research Articles

<span class="mw-page-title-main">Caspase</span> Family of cysteine proteases

Caspases are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cysteine protease activity – a cysteine in its active site nucleophilically attacks and cleaves a target protein only after an aspartic acid residue. As of 2009, there are 12 confirmed caspases in humans and 10 in mice, carrying out a variety of cellular functions.

<span class="mw-page-title-main">Itaconic acid</span> Chemical compound

Itaconic acid is a fatty acid containing five carbons, two of which are in carboxyl groups. At pH levels below 2, itaconic acid is electrically neutral because both of its carboxy residues are bound to hydrogen ; at pH levels above 7, it is double negatively charged because both of its carboxy residues are not bound to hydrogen, i.e., CO2; and at pH's between 2 and 7 it exists as a mixture with none, one, or both of its carboxy residues being bound to hydrogen. In the cells and most tissue fluids of living animals, which generally have pH levels above 7, itaconic acid exists almost exclusively in its double negatively charged form; this form of itaconic acid is termed itaconate.

<span class="mw-page-title-main">Interleukin 1 beta</span> Mammalian protein found in Homo sapiens

Interleukin-1 beta (IL-1β) also known as leukocytic pyrogen, leukocytic endogenous mediator, mononuclear cell factor, lymphocyte activating factor and other names, is a cytokine protein that in humans is encoded by the IL1B gene. There are two genes for interleukin-1 (IL-1): IL-1 alpha and IL-1 beta. IL-1β precursor is cleaved by cytosolic caspase 1 to form mature IL-1β.

<span class="mw-page-title-main">Caspase 1</span> Protein-coding gene in the species Homo sapiens

Caspase-1/Interleukin-1 converting enzyme (ICE) is an evolutionarily conserved enzyme that proteolytically cleaves other proteins, such as the precursors of the inflammatory cytokines interleukin 1β and interleukin 18 as well as the pyroptosis inducer Gasdermin D, into active mature peptides. It plays a central role in cell immunity as an inflammatory response initiator. Once activated through formation of an inflammasome complex, it initiates a proinflammatory response through the cleavage and thus activation of the two inflammatory cytokines, interleukin 1β (IL-1β) and interleukin 18 (IL-18) as well as pyroptosis, a programmed lytic cell death pathway, through cleavage of Gasdermin D. The two inflammatory cytokines activated by Caspase-1 are excreted from the cell to further induce the inflammatory response in neighboring cells.

<span class="mw-page-title-main">NLRP3</span> Human protein and coding gene

NLR family pyrin domain containing 3 (NLRP3), is a protein that in humans is encoded by the NLRP3 gene located on the long arm of chromosome 1.

Pyroptosis is a highly inflammatory form of lytic programmed cell death that occurs most frequently upon infection with intracellular pathogens and is likely to form part of the antimicrobial response. This process promotes the rapid clearance of various bacterial, viral, fungal and protozoan infections by removing intracellular replication niches and enhancing the host's defensive responses. Pyroptosis can take place in immune cells and is also reported to occur in keratinocytes and some epithelial cells.

<span class="mw-page-title-main">NLRP1</span> Human protein-coding gene

NLRP1 encodes NACHT, LRR, FIIND, CARD domain and PYD domains-containing protein 1 in humans. NLRP1 was the first protein shown to form an inflammasome. NLRP1 is expressed by a variety of cell types, which are predominantly epithelial or hematopoietic. The expression is also seen within glandular epithelial structures including the lining of the small intestine, stomach, airway epithelia and in hairless or glabrous skin. NLRP1 polymorphisms are associated with skin extra-intestinal manifestations in CD. Its highest expression was detected in human skin, in psoriasis and in vitiligo. Polymorphisms of NLRP1 were found in lupus erythematosus and diabetes type 1. Variants of mouse NLRP1 were found to be activated upon N-terminal cleavage by the protease in anthrax lethal factor.

<span class="mw-page-title-main">NLRP12</span> Protein-coding gene in the species Homo sapiens

Nucleotide-binding oligomerization domain-like receptor (NLR) pyrin domain (PYD)-containing protein 12 is a protein that in humans is encoded by the NLRP12 gene.

<span class="mw-page-title-main">AIM2</span> Protein-coding gene in the species Homo sapiens

Interferon-inducible protein AIM2 also known as absent in melanoma 2 or simply AIM2 is a protein that in humans is encoded by the AIM2 gene.

<span class="mw-page-title-main">NOD-like receptor</span> Class of proteins

The nucleotide-binding oligomerization domain-like receptors, or NOD-like receptors (NLRs), are intracellular sensors of pathogen-associated molecular patterns (PAMPs) that enter the cell via phagocytosis or pores, and damage-associated molecular patterns (DAMPs) that are associated with cell stress. They are types of pattern recognition receptors (PRRs), and play key roles in the regulation of innate immune response. NLRs can cooperate with toll-like receptors (TLRs) and regulate inflammatory and apoptotic response.

Inflammasomes are cytosolic multiprotein complexs of the innate immune system responsible for the activation of inflammatory responses and cell death. They are formed as a result of specific cytosolic pattern recognition receptors (PRRs) sensing microbe-derived pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) from the host cell, or homeostatic disruptions. Activation and assembly of the inflammasome promotes the activation of caspase-1, which then proteolytically cleaves pro-inflammatory cytokines, interleukin 1β (IL-1β) and interleukin 18 (IL-18), as well as the pore-forming molecule gasdermin D (GSDMD). The N-terminal GSDMD fragment resulting from this cleavage induces a pro-inflammatory form of programmed cell death distinct from apoptosis, referred to as pyroptosis, which is responsible for the release of mature cytokines. Additionally, inflammasomes can act as integral components of larger cell death-inducing complexes called PANoptosomes, which drive another distinct form of pro-inflammatory cell death called PANoptosis.

<span class="mw-page-title-main">Interleukin-1 family</span> Group of cytokines playing a key role in the regulation of immune and inflammatory responses

The Interleukin-1 family is a group of 11 cytokines that plays a central role in the regulation of immune and inflammatory responses to infections or sterile insults.

Murine caspase-11, and its human homologs caspase-4 and caspase-5, are mammalian intracellular receptor proteases activated by TLR4 and TLR3 signaling during the innate immune response. Caspase-11, also termed the non-canonical inflammasome, is activated by TLR3/TLR4-TRIF signaling and directly binds cytosolic lipopolysaccharide (LPS), a major structural element of Gram-negative bacterial cell walls. Activation of caspase-11 by LPS is known to cause the activation of other caspase proteins, leading to septic shock, pyroptosis, and often organismal death.

Immunogenic cell death is any type of cell death eliciting an immune response. Both accidental cell death and regulated cell death can result in immune response. Immunogenic cell death contrasts to forms of cell death that do not elicit any response or even mediate immune tolerance.

<span class="mw-page-title-main">Thirumala-Devi Kanneganti</span> Indian immunologist

Thirumala-Devi Kanneganti is an immunologist and is the Rose Marie Thomas Endowed Chair, Vice Chair of the Department of Immunology, and Member at St. Jude Children's Research Hospital. She is also Director of the Center of Excellence in Innate Immunity and Inflammation at St. Jude Children's Research Hospital. Her research interests include investigating fundamental mechanisms of innate immunity, including inflammasomes and inflammatory cell death, PANoptosis, in infectious and inflammatory disease and cancer.

<span class="mw-page-title-main">Vishva Dixit</span> Kenyan molecular biologist

Vishva Mitra Dixit is a physician of Indian origin who is the current Vice President of Discovery Research at Genentech.

<span class="mw-page-title-main">Dapansutrile</span> Chemical compound

Dapansutrile (OLT1177) is an inhibitor of the NLRP3 inflammasome.

Not to be confused with Autoimmune disease.

PANoptosis is a unique, innate immune, inflammatory, and lytic cell death pathway driven by caspases and RIPKs and regulated by multiprotein PANoptosome complexes. The assembly of the PANoptosome cell death complex occurs in response to germline-encoded pattern-recognition receptors (PRRs) sensing pathogens, including bacterial, viral, and fungal infections, as well as pathogen-associated molecular patterns, damage-associated molecular patterns, and cytokines that are released during infections, inflammatory conditions, and cancer. Several PANoptosome complexes, such as the ZBP1-, AIM2-, RIPK1-, and NLRP12-PANoptosomes, have been characterized so far.

Jonathan C. Kagan is an American immunologist and the Marian R. Neutra, Ph.D. Professor of Pediatrics at Harvard Medical School. He is also the director of Basic Research and Shwachman Chair in Gastroenterology at Boston Children's Hospital. Kagan is a world leader in defining the molecular basis of innate immunity and inflammation.

References

  1. 1 2 3 ENSG00000104518 GRCh38: Ensembl release 89: ENSG00000278718, ENSG00000104518 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022575 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Zou, Ju; Zheng, Yixiang; Huang, Yan; Tang, Daolin; Kang, Rui; Chen, Ruochan (2021). "The Versatile Gasdermin Family: Their Function and Roles in Diseases". Frontiers in Immunology. 12. doi: 10.3389/fimmu.2021.751533 . ISSN   1664-3224. PMC   8632255 . PMID   34858408.
  6. "Entrez Gene: Gasdermin D" . Retrieved 2016-08-26.
  7. "GSDMD gasdermin D [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov.
  8. 1 2 3 Kuang S, Zheng J, Yang H, Li S, Duan S, Shen Y, Ji C, Gan J, Xu XW, Li J (October 2017). "Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis". Proceedings of the National Academy of Sciences of the United States of America. 114 (40): 10642–10647. Bibcode:2017PNAS..11410642K. doi: 10.1073/pnas.1708194114 . PMC   5635896 . PMID   28928145.
  9. Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, et al. (April 2021). "Gasdermin D pore structure reveals preferential release of mature interleukin-1". Nature. 593 (7860): 607–611. Bibcode:2021Natur.593..607X. doi:10.1038/s41586-021-03478-3. PMC   8588876 . PMID   33883744. S2CID   233351704.
  10. 1 2 Dixit V (2015). "Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling". Nature. 526 (7575): 666–671. Bibcode:2015Natur.526..666K. doi:10.1038/nature15541. PMID   26375259. S2CID   4447176.
  11. 1 2 3 Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. (October 2015). "Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death". Nature. 526 (7575): 660–5. Bibcode:2015Natur.526..660S. doi:10.1038/nature15514. PMID   26375003. S2CID   4407455.
  12. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (July 2016). "Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores". Nature. 535 (7610): 153–8. Bibcode:2016Natur.535..153L. doi:10.1038/nature18629. PMC   5539988 . PMID   27383986.
  13. Aglietti RA, Dueber EC (April 2017). "Recent Insights into the Molecular Mechanisms Underlying Pyroptosis and Gasdermin Family Functions". Trends in Immunology. 38 (4): 261–271. doi:10.1016/j.it.2017.01.003. PMID   28196749.
  14. 1 2 Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F (July 2016). "Pore-forming activity and structural autoinhibition of the gasdermin family". Nature. 535 (7610): 111–6. Bibcode:2016Natur.535..111D. doi:10.1038/nature18590. PMID   27281216. S2CID   4391444.
  15. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC (January 2018). "The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages". Immunity. 48 (1): 35–44.e6. doi:10.1016/j.immuni.2017.11.013. PMC   5773350 . PMID   29195811.
  16. Qiu S, Liu J, Xing F (April 2017). "'Hints' in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death". Cell Death and Differentiation. 24 (4): 588–596. doi:10.1038/cdd.2017.24. PMC   5384029 . PMID   28362726.
  17. 1 2 Shi J, Gao W, Shao F (April 2017). "Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death". Trends in Biochemical Sciences. 42 (4): 245–254. doi:10.1016/j.tibs.2016.10.004. PMID   27932073.
  18. Wang WJ, Chen D, Jiang MZ, Xu B, Li XW, Chu Y, Zhang YJ, Mao R, Liang J, Fan DM (February 2018). "Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins". Journal of Digestive Diseases. 19 (2): 74–83. doi: 10.1111/1751-2980.12576 . PMID   29314754.
  19. Aziz M, Jacob A, Wang P (November 2014). "Revisiting caspases in sepsis". Cell Death & Disease. 5 (11): e1526. doi:10.1038/cddis.2014.488. PMC   4260746 . PMID   25412304.
  20. Ren K, Mei Y, Liu Y, Han X, Li E, Bi H, Ji P (2021-11-05). "Gasdermin D Mediates Inflammation-Driven Pathogenesis of the Myelodysplastic Syndromes". Blood. 138 (Supplement 1): 2587. doi: 10.1182/blood-2021-149340 . ISSN   0006-4971. S2CID   244540484.

Further reading


This article incorporates text from the United States National Library of Medicine, which is in the public domain.