Gauss sum

Last updated

In algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically

Contents

where the sum is over elements r of some finite commutative ring R, ψ is a group homomorphism of the additive group R+ into the unit circle, and χ is a group homomorphism of the unit group R× into the unit circle, extended to non-unit r, where it takes the value 0. Gauss sums are the analogues for finite fields of the Gamma function. [1]

Such sums are ubiquitous in number theory. They occur, for example, in the functional equations of Dirichlet L-functions, where for a Dirichlet character χ the equation relating L(s, χ) and L(1  s, χ) (where χ is the complex conjugate of χ) involves a factor[ clarification needed ]

History

The case originally considered by Carl Friedrich Gauss was the quadratic Gauss sum, for R the field of residues modulo a prime number p, and χ the Legendre symbol. In this case Gauss proved that G(χ) = p12 or ip12 for p congruent to 1 or 3 modulo 4 respectively (the quadratic Gauss sum can also be evaluated by Fourier analysis as well as by contour integration).

An alternate form for this Gauss sum is

.

Quadratic Gauss sums are closely connected with the theory of theta functions.

The general theory of Gauss sums was developed in the early 19th century, with the use of Jacobi sums and their prime decomposition in cyclotomic fields. Gauss sums over a residue ring of integers mod N are linear combinations of closely related sums called Gaussian periods.

The absolute value of Gauss sums is usually found as an application of Plancherel's theorem on finite groups. In the case where R is a field of p elements and χ is nontrivial, the absolute value is p12. The determination of the exact value of general Gauss sums, following the result of Gauss on the quadratic case, is a long-standing issue. For some cases see Kummer sum.

Properties of Gauss sums of Dirichlet characters

The Gauss sum of a Dirichlet character modulo N is

If χ is also primitive, then

in particular, it is nonzero. More generally, if N0 is the conductor of χ and χ0 is the primitive Dirichlet character modulo N0 that induces χ, then the Gauss sum of χ is related to that of χ0 by

where μ is the Möbius function. Consequently, G(χ) is non-zero precisely when N/N0 is squarefree and relatively prime to N0. [2]

Other relations between G(χ) and Gauss sums of other characters include

where χ is the complex conjugate Dirichlet character, and if χ is a Dirichlet character modulo N such that N and N are relatively prime, then

The relation among G(χχ′), G(χ), and G(χ′) when χ and χ are of the same modulus (and χχ is primitive) is measured by the Jacobi sum J(χ, χ′). Specifically,

Further properties

See also

Related Research Articles

<span class="mw-page-title-main">Quadratic reciprocity</span> Gives conditions for the solvability of quadratic equations modulo prime numbers

In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.

In analytic number theory and related branches of mathematics, a complex-valued arithmetic function is a Dirichlet character of modulus if for all integers and :

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e., if there exists an integer x such that:

In mathematics, a Dirichlet L-series is a function of the form

In mathematics, in the area of number theory, a Gaussian period is a certain kind of sum of roots of unity. The periods permit explicit calculations in cyclotomic fields connected with Galois theory and with harmonic analysis. They are basic in the classical theory called cyclotomy. Closely related is the Gauss sum, a type of exponential sum which is a linear combination of periods.

In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

In mathematics, the Chowla–Mordell theorem is a result in number theory determining cases where a Gauss sum is the square root of a prime number, multiplied by a root of unity. It was proved and published independently by Sarvadaman Chowla and Louis Mordell, around 1951.

In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum. These objects are named after Carl Friedrich Gauss, who studied them extensively and applied them to quadratic, cubic, and biquadratic reciprocity laws.

In number theory, the Kronecker symbol, written as or , is a generalization of the Jacobi symbol to all integers . It was introduced by Leopold Kronecker.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by mathematicians such as John Knopfmacher and Arne Beurling in the twentieth century.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

In mathematics, a character sum is a sum of values of a Dirichlet character χ moduloN, taken over a given range of values of n. Such sums are basic in a number of questions, for example in the distribution of quadratic residues, and in particular in the classical question of finding an upper bound for the least quadratic non-residue moduloN. Character sums are often closely linked to exponential sums by the Gauss sums.

In number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function.

In mathematics, a Jacobi sum is a type of character sum formed with Dirichlet characters. Simple examples would be Jacobi sums J(χ, ψ) for Dirichlet characters χ, ψ modulo a prime number p, defined by

In mathematics, and more particularly in analytic number theory, Perron's formula is a formula due to Oskar Perron to calculate the sum of an arithmetic function, by means of an inverse Mellin transform.

In mathematics, Kummer sum is the name given to certain cubic Gauss sums for a prime modulus p, with p congruent to 1 modulo 3. They are named after Ernst Kummer, who made a conjecture about the statistical properties of their arguments, as complex numbers. These sums were known and used before Kummer, in the theory of cyclotomy.

The Hasse–Davenport relations, introduced by Davenport and Hasse (1935), are two related identities for Gauss sums, one called the Hasse–Davenport lifting relation, and the other called the Hasse–Davenport product relation. The Hasse–Davenport lifting relation is an equality in number theory relating Gauss sums over different fields. Weil (1949) used it to calculate the zeta function of a Fermat hypersurface over a finite field, which motivated the Weil conjectures.

References

  1. B. H. Gross and N. Koblitz. Gauss sums and the p-adic Γ-function. Ann. of Math. (2), 109(3):569–581, 1979.
  2. Theorem 9.10 in H. L. Montgomery, R. C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, 97, (2006).