Geologic overpressure

Last updated

Geologic overpressure in stratigraphic layers is caused by the inability of connate pore fluids to escape as the surrounding mineral matrix compacts under the lithostatic pressure caused by overlying layers. Fluid escape may be impeded by sealing of the compacting rock by surrounding impermeable layers (such as evaporites, chalk and cemented sandstones). Alternatively, the rate of burial of the stratigraphic layer may be so great that the efflux of fluid is not sufficiently rapid to maintain hydrostatic pressure.

Common situations where overpressure may occur: in a buried river channel filled with coarse sand that is sealed on all sides by impermeable shales, or when there is an explosion within a confined space.

It is extremely important to be able to diagnose overpressured units when drilling through them, as the drilling mud weight (density) must be adjusted to compensate. If it is not, there is a risk that the pressure difference down-well will cause a dramatic decompression of the overpressured layer and result in a blowout at the well-head with possibly disastrous consequences.

Because overpressured sediments tend to exhibit better porosity than would be predicted from their depth, they often make attractive hydrocarbon reservoirs and are therefore of important economic interest.

Related Research Articles

Pressure is force magnitude applied over an area. Overburden pressure is a geology term that denotes the pressure caused by the weight of the overlying layers of material at a specific depth under the earth's surface. Overburden pressure is also called lithostatic pressure, or vertical stress.

<span class="mw-page-title-main">Vortex</span> Fluid flow revolving around an axis of rotation

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

<span class="mw-page-title-main">Oil well</span> Well drilled to extract crude oil and/or gas

An oil well is a drillhole boring in Earth that is designed to bring petroleum oil hydrocarbons to the surface. Usually some natural gas is released as associated petroleum gas along with the oil. A well that is designed to produce only gas may be termed a gas well. Wells are created by drilling down into an oil or gas reserve that is then mounted with an extraction device such as a pumpjack which allows extraction from the reserve. Creating the wells can be an expensive process, costing at least hundreds of thousands of dollars, and costing much more when in hard to reach areas, e.g., when creating offshore oil platforms. The process of modern drilling for wells first started in the 19th century, but was made more efficient with advances to oil drilling rigs during the 20th century.

<span class="mw-page-title-main">Ice core</span> Cylindrical sample drilled from an ice sheet

An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper ones, and an ice core contains ice formed over a range of years. Cores are drilled with hand augers or powered drills; they can reach depths of over two miles (3.2 km), and contain ice up to 800,000 years old.

<span class="mw-page-title-main">Artesian well</span> Confined aquifer containing groundwater under positive pressure

An artesian well is a well that brings groundwater to the surface without pumping because it is under pressure within a body of rock and/or sediment known as an aquifer. When trapped water in an aquifer is surrounded by layers of impermeable rock or clay, which apply positive pressure to the water, it is known as an artesian aquifer. If a well were to be sunk into an artesian aquifer, water in the well-pipe would rise to a height corresponding to the point where hydrostatic equilibrium is reached.

Well logging, also known as borehole logging is the practice of making a detailed record of the geologic formations penetrated by a borehole. The log may be based either on visual inspection of samples brought to the surface or on physical measurements made by instruments lowered into the hole. Some types of geophysical well logs can be done during any phase of a well's history: drilling, completing, producing, or abandoning. Well logging is performed in boreholes drilled for the oil and gas, groundwater, mineral and geothermal exploration, as well as part of environmental and geotechnical studies.

A mud engineer works on an oil well or gas well drilling rig, and is responsible for ensuring the properties of the drilling fluid, also known as drilling mud, are within designed specifications.

Well control is the technique used in oil and gas operations such as drilling, well workover and well completion for maintaining the hydrostatic pressure and formation pressure to prevent the influx of formation fluids into the wellbore. This technique involves the estimation of formation fluid pressures, the strength of the subsurface formations and the use of casing and mud density to offset those pressures in a predictable fashion. Understanding pressure and pressure relationships is important in well control.

<span class="mw-page-title-main">Petroleum reservoir</span> Subsurface pool of hydrocarbons

A petroleum reservoir or oil and gas reservoir is a subsurface accumulation of hydrocarbons contained in porous or fractured rock formations. Such reservoirs form when kerogen is created in surrounding rock by the presence of high heat and pressure in the Earth's crust.

<span class="mw-page-title-main">Petroleum seep</span> Place where natural hydrocarbons escape

A petroleum seep is a place where natural liquid or gaseous hydrocarbons escape to the Earth's atmosphere and surface, normally under low pressure or flow. Seeps generally occur above either terrestrial or offshore petroleum accumulation structures. The hydrocarbons may escape along geological layers, or across them through fractures and fissures in the rock, or directly from an outcrop of oil-bearing rock.

<span class="mw-page-title-main">Drilling fluid</span> Aid for drilling boreholes into the ground

In geotechnical engineering, drilling fluid, also known as drilling mud, is used to aid the drilling of boreholes into the earth. Used while drilling oil and natural gas wells and on exploration drilling rigs, drilling fluids are also used for much simpler boreholes, such as water wells.

The Buchan oil field is a small oil field with small gas reserves in the central North Sea. It lies in an area known as the South Halibut Basin, approximately 120 miles (190 km) northeast of Aberdeen, Scotland, and is located mainly in license block 21/1A, extending into block 20/5A(E). The field was discovered in August 1974, two years after the issue date for those blocks. It is named after Buchan, an area of N.E. Scotland with its main town being Peterhead.

<span class="mw-page-title-main">Blowout (well drilling)</span> Uncontrolled release of crude oil and/or natural gas from a well

A blowout is the uncontrolled release of crude oil and/or natural gas from an oil well or gas well after pressure control systems have failed. Modern wells have blowout preventers intended to prevent such an occurrence. An accidental spark during a blowout can lead to a catastrophic oil or gas fire.

<span class="mw-page-title-main">Fracture (geology)</span> Geologic discontinuity feature, often a joint or fault

A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.

<span class="mw-page-title-main">Sidoarjo mud flow</span> Mud volcano in the subdistrict of Porong, Sidoarjo in Indonesia

The Sidoarjo mud flow is the result of an erupting mud volcano in the subdistrict of Porong, Sidoarjo in East Java, Indonesia that has been in eruption since May 2006. It is the biggest mud volcano in the world; responsibility for the disaster was assigned to the blowout of a natural gas well drilled by PT Lapindo Brantas, although company officials contend it was caused by a very distant earthquake that occurred in a different province.

<span class="mw-page-title-main">Well</span> Excavation or structure to provide access to groundwater

A well is an excavation or structure created in the ground by digging, driving, or drilling to access liquid resources, usually water. The oldest and most common kind of well is a water well, to access groundwater in underground aquifers. The well water is drawn up by a pump, or using containers, such as buckets or large water bags that are raised mechanically or by hand. Water can also be injected back into the aquifer through the well. Wells were first constructed at least eight thousand years ago and historically vary in construction from a simple scoop in the sediment of a dry watercourse to the qanats of Iran, and the stepwells and sakiehs of India. Placing a lining in the well shaft helps create stability, and linings of wood or wickerwork date back at least as far as the Iron Age.

<span class="mw-page-title-main">Petroleum trap</span> Geological structure allowing accumulation of hydrocarbons in a reservoir

In petroleum geology, a trap is a geological structure affecting the reservoir rock and caprock of a petroleum system allowing the accumulation of hydrocarbons in a reservoir. Traps can be of two types: stratigraphic or structural. Structural traps are the most important type of trap as they represent the majority of the world's discovered petroleum resources.

Oil well control is the management of the dangerous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation gas or fluid (hydrocarbons), usually referred to as kick, from entering into the wellbore during drilling or well interventions.

<span class="mw-page-title-main">Ice drilling</span> Method of drilling through ice

Ice drilling allows scientists studying glaciers and ice sheets to gain access to what is beneath the ice, to take measurements along the interior of the ice, and to retrieve samples. Instruments can be placed in the drilled holes to record temperature, pressure, speed, direction of movement, and for other scientific research, such as neutrino detection.

References