Germplasm

Last updated
Germplasm bank of the Instituto Nacional de Tecnologia Agropecuaria. INTA - Banco de germoplasma.jpg
Germplasm bank of the Instituto Nacional de Tecnología Agropecuaria.

Germplasm refers to genetic resources such as seeds, tissues, and DNA sequences that are maintained for the purpose of animal and plant breeding, conservation efforts, agriculture, and other research uses. These resources may take the form of seed collections stored in seed banks, trees growing in nurseries, animal breeding lines maintained in animal breeding programs or gene banks. Germplasm collections can range from collections of wild species to elite, domesticated breeding lines that have undergone extensive human selection. Germplasm collection is important for the maintenance of biological diversity, food security, and conservation efforts.

Contents

In the United States, germplasm resources are regulated by the National Genetic Resources Program (NGRP), created by the U.S. congress in 1990. In addition the web server The Germplasm Resources Information Network (GRIN) [1] provides information about germplasms as they pertain to agriculture production. [2]

Regulation

In the United States, germplasm resources are regulated by the National Genetic Resources Program (NGRP), created by the U.S. congress in 1990. In addition the web server The Germplasm Resources Information Network (GRIN) provides information about germplasms as they pertain to agriculture production.

Specifically for plants, there is the U.S. National Plant Germplasm System (NPGS) which holds > 450,000 accessions with 10,000 species of the 85 most commonly grown crops. Many accessions held are international species, and NPGS distributes germplasm resources internationally. [3]

As genetic information moves largely online there is a transition in germplasm information from a physical location (seed banks, cryopreserving) to online platforms containing genetic sequences. In addition there are issues in the collection germplasm information and where they are shared. Historically some germplasm information had been collected in developing countries and then shared to researchers who then sell the donor country the original germplasm that they altered. There is a lack of compensation to the donor countries and this is an issue. [3]

Storage methods

Effective Germplasm work includes the collection, storage, analysis, documentation, and exchange of genetic information. This information can be stored as accessions, which is DNA sequence information, or live cells/tissues that can be preserved. However, only about 5% of current germplasm resources are living samples. [4] For live cells/tissues, germplasm resources can be stored ex situ in seed banks, botanic gardens, or through cryopreservation. Cryopreservation is the process of storing germplasm at very low temperatures, such as liquid nitrogen. [5] This process ensures that cells do not degrade and keeps the germplasm intact. In addition, resources can be stored in situ such as the natural area the species was found.

Conservation efforts

About 10,000 years ago is when humans began to domesticate plant species for the purpose of food, seeds, and vegetation. [4] Since then, agriculture has been a staple for human civilizations and plant breeding has allowed more genetic diversity and a more diverse gene pool. [4] Germplasm resources allow for more genetic assets to be used and integrated for agricultural systems for plant breeding and bringing about new varieties. In addition, researchers are looking at crop wild relatives (CWRs) that could expand gene pools of crop species and provide more ability to select target traits.

Furthermore, we are currently facing a biodiversity crisis event that is caused by human activities and industrialization. Many plants and animals have gone extinct due to losing their habitat, their habitat being degraded with contaminants, and climate change. Germplasm resources are a way to conserve the pre-existing biological diversity and to possibly regenerate habitats. By storing this genetic information there is data about what species are present including plants, animals, bacteria, and fungi and what a complete ecosystem in specific areas look like.

See also

Related Research Articles

<span class="mw-page-title-main">Seed bank</span> Backup seed storage

A seed bank stores seeds to preserve genetic diversity; hence it is a type of gene bank. There are many reasons to store seeds. One is to preserve the genes that plant breeders need to increase yield, disease resistance, drought tolerance, nutritional quality, taste, etc. of crops. Another is to forestall loss of genetic diversity in rare or imperiled plant species in an effort to conserve biodiversity ex situ. Many plants that were used centuries ago by humans are used less frequently now; seed banks offer a way to preserve that historical and cultural value. Collections of seeds stored at constant low temperature and low moisture are guarded against loss of genetic resources that are otherwise maintained in situ or in field collections. These alternative "living" collections can be damaged by natural disasters, outbreaks of disease, or war. Seed banks are considered seed libraries, containing valuable information about evolved strategies to combat plant stress, and can be used to create genetically modified versions of existing seeds. The work of seed banks often span decades and even centuries. Most seed banks are publicly funded and seeds are usually available for research that benefits the public.

<i>Ex situ</i> conservation Preservation of plants or animals outside their natural habitats

Ex situ conservation is the process of protecting an endangered species, variety or breed, of plant or animal outside its natural habitat. For example, by removing part of the population from a threatened habitat and placing it in a new location, an artificial environment which is similar to the natural habitat of the respective animal and within the care of humans, such as a zoological park or wildlife sanctuary. The degree to which humans control or modify the natural dynamics of the managed population varies widely, and this may include alteration of living environments, reproductive patterns, access to resources, and protection from predation and mortality.

In situ conservation is the on-site conservation or the conservation of genetic resources in natural populations of plant or animal species, such as forest genetic resources in natural populations of tree species. This process protects the inhabitants and ensures the sustainability of the environment and ecosystem.

<span class="mw-page-title-main">Agricultural biodiversity</span> Agricultural concept

Agricultural biodiversity or agrobiodiversity is a subset of general biodiversity pertaining to agriculture. It can be defined as "the variety and variability of animals, plants and micro-organisms at the genetic, species and ecosystem levels that sustain the ecosystem structures, functions and processes in and around production systems, and that provide food and non-food agricultural products.” It is managed by farmers, pastoralists, fishers and forest dwellers, agrobiodiversity provides stability, adaptability and resilience and constitutes a key element of the livelihood strategies of rural communities throughout the world. Agrobiodiversity is central to sustainable food systems and sustainable diets. The use of agricultural biodiversity can contribute to food security, nutrition security, and livelihood security, and it is critical for climate adaptation and climate mitigation.

<span class="mw-page-title-main">Gene bank</span> Facility that preserves genetic material

Gene banks are a type of biorepository that preserves genetic material. For plants, this is done by in vitro storage, freezing cuttings from the plant, or stocking the seeds. For animals, this is done by the freezing of sperm and eggs in zoological freezers until further need. With corals, fragments are taken and stored in water tanks under controlled conditions. Genetic material in a 'gene bank' is preserved in a variety of ways, such as freezing at -196 °C in liquid nitrogen, being placed in artificial ecosystems, or put in controlled nutrient media.

Germplasm Resources Information Network or GRIN is an online USDA National Genetic Resources Program software project to comprehensively manage the computer database for the holdings of all plant germplasm collected by the National Plant Germplasm System.

Genetic erosion is a process where the limited gene pool of an endangered species diminishes even more when reproductive individuals die off before reproducing with others in their endangered low population. The term is sometimes used in a narrow sense, such as when describing the loss of particular alleles or genes, as well as being used more broadly, as when referring to the loss of a phenotype or whole species.

<span class="mw-page-title-main">Bioversity International</span>

Bioversity International is a global research-for-development organization that delivers scientific evidence, management practices and policy options to use and safeguard agricultural biodiversity to attain global food- and nutrition security, working with partners in low-income countries in different regions where agricultural biodiversity can contribute to improved nutrition, resilience, productivity and climate change adaptation.

<span class="mw-page-title-main">Crop wild relative</span> Wild plant closely related to a domesticated plant

A crop wild relative (CWR) is a wild plant closely related to a domesticated plant. It may be a wild ancestor of the domesticated (cultivated) plant or another closely related taxon.

Crop diversity or crop biodiversity is the variety and variability of crops, plants used in agriculture, including their genetic and phenotypic characteristics. It is a subset of a specific element of agricultural biodiversity. Over the past 50 years, there has been a major decline in two components of crop diversity; genetic diversity within each crop and the number of species commonly grown.

<span class="mw-page-title-main">Istituto di Genetica Vegetale</span>

Istituto di Genetica Vegetale (IGV) is a research network om Plant Genetics and Breeding within the Italian Consiglio Nazionale delle Ricerche. IGV is headquartered in Bari and has four different Divisions in Portici, Palermo, Florence and Perugia. IGV started its activities in November 2002.

<i>Aframomum corrorima</i> Species of plant in the family Zingiberaceae

Aframomum corrorima is a species of flowering plant in the ginger family, Zingiberaceae. It's a herbaceous perennial that produces leafy stems 1–2 meters tall from rhizomatous roots. The alternately-arranged leaves are dark green, 10–30 cm long and 2.5–6 cm across, elliptical to oblong in shape. Pink flowers are borne near the ground and give way to red, fleshy fruits containing shiny brown seeds, which are typically 3–5 mm in diameter.

The U.S. National Plant Germplasm System (NPGS) is a network of institutions and agencies led by the Agricultural Research Service (ARS) of the U.S. Department of Agriculture in the effort to conserve and facilitate the use of the genetic diversity of agriculturally important plants and their wild relatives.

Genesys is an online, global portal about plant genetic resources for food and agriculture. It is a gateway from which germplasm accessions from gene banks around the world can be easily found and ordered.

The Nordic Genetic Resource Center is a plant, farm animal and forest conservation, gene resource guardian, and sustainable use organization under and primarily financed by the Nordic Council of Ministers, and is headquartered in Alnarp, near Malmö, in southern Sweden. NordGen's primary mission is "securing the broad diversity of genetic resources linked to food and agriculture" through "conservation and sustainable use, solid documentation and information work and international agreements".

<span class="mw-page-title-main">Cryoconservation of animal genetic resources</span>

Cryoconservation of animal genetic resources is a strategy wherein samples of animal genetic materials are preserved cryogenically.

<span class="mw-page-title-main">Plant genetic resources</span>

Plant genetic resources describe the variability within plants that comes from human and natural selection over millennia. Their intrinsic value mainly concerns agricultural crops.

MusaNet is a global network of scientists and other stakeholders working on banana genetic resources. Founded in 2011 and coordinated by Bioversity International, it has over 100 individual members representing various banana research institutes and organizations.

Genetic resources means genetic material of actual or potential value where genetic material means any material of plant, animal, microbial or other origin containing functional units of heredity... Genetic resources thus refer to the part of genetic diversity that has or could have practical use, such as in plant breeding. The term was introduced by Otto Frankel and Erna Bennett for a technical conference on the exploration, utilization and conservation of plant genetic resources, organized by the Food and Agriculture Organisation (FAO) and the International Biological Program (IBP), held in Rome, Italy, 18–26 September 1967.

Plant cryopreservation is a genetic resource conservation strategy that allows plant material, such as seeds, pollen, shoot tips or dormant buds to be stored indefinitely in liquid nitrogen. After thawing, these genetic resources can be regenerated into plants and used on the field. While this cryopreservation conservation strategy can be used on all plants, it is often only used under certain circumstances: 1) crops with recalcitrant seeds e.g. avocado, coconut 2) seedless crops such as cultivated banana and plantains or 3) crops that are clonally propagated such as cassava, sweet potato.

References

References

  1. "USDA ARS GRIN". www.ars-grin.gov. Retrieved 2023-02-08.
  2. Kinard, Gary, Germplasm Resources Information Network (GRIN) (PDF), USDA NAL, retrieved 2023-02-08
  3. 1 2 "USDA ERS - Plant Genetic Resources: New Rules for International Exchange". 2016-10-18. Archived from the original on 2016-10-18. Retrieved 2023-03-22.
  4. 1 2 3 "Germplasm Conservation". encyclopedia.pub. Retrieved 2023-03-12.
  5. Merritt, David J.; Hay, Fiona R.; Swarts, Nigel D.; Sommerville, Karen D.; Dixon, Kingsley W.; Herendeen, Editor: Patrick S. (2014). "Ex situ Conservation and Cryopreservation of Orchid Germplasm". International Journal of Plant Sciences. 175 (1): 46–58. doi:10.1086/673370. ISSN   1058-5893. JSTOR   10.1086/673370. S2CID   53319038.{{cite journal}}: |first6= has generic name (help)