Goniophotometer

Last updated
Manual (1), and Mitscherlich's optical (2) goniometers for use in crystallography, c. 1900 Goniometr-1900.png
Manual (1), and Mitscherlich's optical (2) goniometers for use in crystallography, c. 1900

A Goniophotometer is a device used for measurement of the light emitted from an object at different angles. [1] The use of goniophotometers has been increasing in recent years with the introduction of LED-light sources, which are mostly directed light sources, where the spatial distribution of light is not homogeneous. [2] If a light source is homogeneous in its distribution of light, it is called a Lambertian source. [3] Due to strict regulations, the spatial distribution of light is of high importance to automotive lighting and its design.

Contents

Uses

A goniophotometer can be used for various applications:

Equipped with color sensors additional characteristics can be measured

Types

The goniophotometer types A, B, and C defined here are derived from publication "CIE 70" of the International Commission on Illumination. [4]

Type A

Fixed horizontal axis, with the vertical axis attached, both perpendicular to the main output direction of the light source

Type B

Fixed vertical axis, with the horizontal axis attached, both perpendicular to the main output direction of the light source

Type A and B are Double columns structure. This type is applied to fixed the grille lamp. The symmetry axis of lamp and the horizontal of rotating supporter is coaxial, in the B-βcoordinate system, and the two is vertical Cross, in the A-αcoordinate system.

Type C

Fixed vertical axis perpendicular to the line of measurement, with a horizontal axis parallel to the main output direction of the light source

Type C are single column structures. The single column structure is created when the assistant column is taken down from double columns structure. This type is applied to a fixed tube lamp, spot lamp, or other devices. [5] The axis radiation of lamp and the horizontal of rotating supporter is coaxial.

Camera-based goniophotometers

Luminous intensity distributions can also be measured using imaging goniophotometers. [6] In order to measure the full angular distribution of a light source, the fisheye camera method can be used. The method is based on employing a fisheye-lens camera installed into a port of an integrating sphere. The camera simultaneously records the luminous intensity data for all angles of light emission, reducing the measurement uncertainty due to temporal effects, such as drift and temporal modulation of the light source. The instantaneous nature of the camera measurement also significantly reduces the time required to obtain the luminous intensity distribution of the device under test, and is not affected by the angular resolution set for the measurement.

See also

Related Research Articles

<span class="mw-page-title-main">Candela</span> SI unit of luminous intensity

The candela is the unit of luminous intensity in the International System of Units (SI). It measures luminous power per unit solid angle emitted by a light source in a particular direction. Luminous intensity is analogous to radiant intensity, but instead of simply adding up the contributions of every wavelength of light in the source's spectrum, the contribution of each wavelength is weighted by the luminosity function, the model of the sensitivity of the human eye to different wavelengths, standardized by the CIE and ISO. A common wax candle emits light with a luminous intensity of roughly one candela. If emission in some directions is blocked by an opaque barrier, the emission would still be approximately one candela in the directions that are not obscured.

<span class="mw-page-title-main">Luminance</span> Photometric measure

Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls within a given solid angle.

<span class="mw-page-title-main">Galvanometer</span> Instrument to measure electric current

A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely.

<span class="mw-page-title-main">Flashlight</span> Portable hand-held electric light

A flashlight (US), or torch (CE) is a portable hand-held electric lamp. Formerly, the light source typically was a miniature incandescent light bulb, but these have been displaced by light-emitting diodes (LEDs) since the early 2000s. A typical flashlight consists of the light source mounted in a reflector, a transparent cover to protect the light source and reflector, a battery, and a switch, all enclosed in a case.

In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.

Colorimetry is "the science and technology used to quantify and describe physically the human color perception". It is similar to spectrophotometry, but is distinguished by its interest in reducing spectra to the physical correlates of color perception, most often the CIE 1931 XYZ color space tristimulus values and related quantities.

<span class="mw-page-title-main">Photometry (optics)</span> Science of the measurement of visible light

Photometry is the science of the measurement of light, in terms of its perceived brightness to the human eye. It is distinct from radiometry, which is the science of measurement of radiant energy in terms of absolute power. In modern photometry, the radiant power at each wavelength is weighted by a luminosity function that models human brightness sensitivity. Typically, this weighting function is the photopic sensitivity function, although the scotopic function or other functions may also be applied in the same way. The weightings are standardized by the CIE and ISO.

<span class="mw-page-title-main">Luminous flux</span> Perceived luminous power

In photometry, luminous flux or luminous power is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of electromagnetic radiation, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light.

<span class="mw-page-title-main">Azimuth thruster</span> Steerable propulsion pod under a watercraft

An azimuth thruster is a configuration of marine propellers placed in pods that can be rotated to any horizontal angle (azimuth), making a rudder redundant. These give ships better maneuverability than a fixed propeller and rudder system.

<span class="mw-page-title-main">Candlepower</span> Unit of measurement

Candlepower is a unit of measurement for luminous intensity. It expresses levels of light intensity relative to the light emitted by a candle of specific size and constituents. The historical candlepower is equal to 0.981 candelas. In modern usage, candlepower is sometimes used as a synonym for candela.

<span class="mw-page-title-main">Slit lamp</span> Device for examining the eye

In ophthalmology and optometry, a slit lamp is an instrument consisting of a high-intensity light source that can be focused to shine a thin sheet of light into the eye. It is used in conjunction with a biomicroscope. The lamp facilitates an examination of the anterior segment and posterior segment of the human eye, which includes the eyelid, sclera, conjunctiva, iris, natural crystalline lens, and cornea. The binocular slit-lamp examination provides a stereoscopic magnified view of the eye structures in detail, enabling anatomical diagnoses to be made for a variety of eye conditions. A second, hand-held lens is used to examine the retina.

The lumen is the unit of luminous flux, a measure of the total quantity of visible light emitted by a source per unit of time, in the International System of Units (SI). Luminous flux differs from power in that radiant flux includes all electromagnetic waves emitted, while luminous flux is weighted according to a model of the human eye's sensitivity to various wavelengths, this weighting is standardized by the CIE and ISO. One lux is one lumen per square metre.

<span class="mw-page-title-main">Heliodon</span>

A heliodon (HEE-leo-don) is a device for adjusting the angle between a flat surface and a beam of light to match the angle between a horizontal plane at a specific latitude and the solar beam. Heliodons are used primarily by architects and students of architecture. By placing a model building on the heliodon’s flat surface and making adjustments to the light/surface angle, the investigator can see how the building would look in the three-dimensional solar beam at various dates and times of day.

<span class="mw-page-title-main">Polarizer</span> Optical filter device

A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well-defined polarization, that is polarized light. The common types of polarizers are linear polarizers and circular polarizers. Polarizers are used in many optical techniques and instruments, and polarizing filters find applications in photography and LCD technology. Polarizers can also be made for other types of electromagnetic waves besides visible light, such as radio waves, microwaves, and X-rays.

The following are common definitions related to the machine vision field.

<span class="mw-page-title-main">Glossmeter</span> Instrument for measuring specular reflection gloss

A glossmeter is an instrument which is used to measure specular reflection gloss of a surface. Gloss is determined by projecting a beam of light at a fixed intensity and angle onto a surface and measuring the amount of reflected light at an equal but opposite angle.

This glossary defines terms that are used in the document "Defining Video Quality Requirements: A Guide for Public Safety", developed by the Video Quality in Public Safety (VQIPS) Working Group. It contains terminology and explanations of concepts relevant to the video industry. The purpose of the glossary is to inform the reader of commonly used vocabulary terms in the video domain. This glossary was compiled from various industry sources.

<span class="mw-page-title-main">Temporal light interference</span>

Temporal light interference (TLI) is an unacceptable degradation of the performance of an equipment or system that has an optical input for its intended functioning and is caused by a temporal light modulation disturbance. A temporal light modulation (TLM) disturbance may be either an intentional or unintentional temporal light modulation (TLM) of lighting equipment such as luminaires or lamps. Examples of equipment that can be interfered are barcode scanners, cameras and test equipment.

Temporal Light Artefacts (TLAs) are undesired effects in the visual perception of a human observer induced by temporal light modulations. Two well-known examples of such unwanted effects are flicker and stroboscopic effect. The term 'flicker' refers to directly visible light modulations at relatively low frequencies and small modulation levels. 'Stroboscopic effect' is the effect which may become visible for a person when a moving object is illuminated by modulated light at somewhat higher frequencies (>80 Hz) and larger modulation levels.

The artificial sky is a daylight simulation device that replicates the light coming from the sky dome. An architectural scale model or 1:1 full-scaled aircraft is placed under an artificial sky to predict daylight penetration within buildings or aircraft that subjects to different situations, complex geometries, or heavily obstructed windows. The concept of the artificial sky was derived due to heliodon’s limitation in providing a stable lighting environment for evaluating the diffuse skylight component.

References

  1. Marx, P. (1997). "New goniophotometers for light-engineering laboratories" (PDF). Light & Engineering. 5 (4): 32–36.
  2. Lindemann, Matthias; Maass, Robert (15 December 2009). "Photometry and colorimetry of reference LEDs by using a compact goniophotometer". MAPAN. 24 (3): 143–152. doi:10.1007/s12647-009-0018-6. S2CID   108700502.
  3. Palmer, James (2010). The Art of Radiometry. Bellingham, Washington: SPIE. p. 27. ISBN   9780819472458.
  4. CIE 70, The Measurement of Absolute Luminous Intensity Distributions. Vienna: CIE. 1987.
  5. "LM-79 Moving Detector Type C Goniophotometer - LISUN". www.lisungroup.com.
  6. "US Patent for Differential goniophotometer Patent (Patent # 9,958,317 issued May 1, 2018) - Justia Patents Search". patents.justia.com. Retrieved 2023-05-17.