GreenSun Energy

Last updated

GreenSun Energy is a Jerusalem-based Israeli company that has developed a new process for producing electricity from solar energy. As The Economist points out, solar energy is a logical development since "Israel is a country with plenty of sunshine, lots of sand and quite a few clever physicists and chemists." [1] The company was founded in 2012 with the goal of helping businesses and individuals reduce their carbon footprint and save money on energy costs. GreenSun Energy operates in a number of locations across the United States, and offers a variety of financing options to make it easier for customers to adopt renewable energy technologies.

Contents

Process

Traditional photovoltaic cells are made from thin sheets of silicon covered by glass plates. In the GreenSun process, it is only the outer edges of the glass plates that are covered by thin strips of silicon. The physicists and chemists at GreenSun, led by Renata Reisfeld, coat the glass with metallic nanoparticles and dyes to cause the sunlight falling on the glass to diffuse sideways toward the edges where the silicon strips turn it into electricity. [1]

A mixture of dyes is used to capture and absorb a wide spectrum of available light. Having absorbed the sunlight, the fluorescent dyes then re-radiate it. Interaction with the metallic nanoparticles turns light into a form of electromagnetic radiation known as surface plasmons. The surface plasmons propagate over the glass surface and are intercepted by the silicon strips at the edges. The company would not reveal which metals are used in the process. [1]

Because the process uses less silicon, it is far less expensive than conventional photovoltaic modules. It is also more efficient. In a conventional photovoltaic cell, much of the sun's energy is lost as heat because the energy of light varies across the spectrum (red light is less energetic than blue, for example). Only a particular amount of energy is needed to knock an electron free from the silicon atoms. If the sunlight is more energetic than necessary, more energy than usual is lost as heat. Sunlight scatters its energy, but the dye/nanoparticle mix in the GreenSun process delivers plasmons and photons of the right energy to knock electrons free more efficiently. [1]

Economics

GreenEnergy CEO Amnon Leikovich claims that the process, once put into production, could deliver electricity at about double the cost of a conventional power station.[ clarification needed ] Traditional photovoltaic modules deliver electricity at about five times the cost of a conventional power plant. Leikovich hopes that costs can be brought down even further. [1]

According to corporate spokesmen Eitan Shmueli, GreenSun's photovoltaic panels are capable of producing electricity from low-intensity sunlight on cloudy days and from sunlight that reaches them from any angle. The company claims that can turn the windows or walls of buildings into electricity-generating photovoltaic panels. [2]

Related Research Articles

<span class="mw-page-title-main">Photovoltaics</span> Method to produce electricity from solar radiation

Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially used for electricity generation and as photosensors.

In the 19th century, it was observed that the sunlight striking certain materials generates detectable electric current – the photoelectric effect. This discovery laid the foundation for solar cells. Solar cells have gone on to be used in many applications. They have historically been used in situations where electrical power from the grid was unavailable.

<span class="mw-page-title-main">Dye-sensitized solar cell</span> Type of thin-film solar cell

A dye-sensitized solar cell is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne (EPFL) until the publication of the first high efficiency DSSC in 1991. Michael Grätzel has been awarded the 2010 Millennium Technology Prize for this invention.

<span class="mw-page-title-main">Solar cell</span> Photodiode used to produce power from light on a large scale

A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels. The common single-junction silicon solar cell can produce a maximum open-circuit voltage of approximately 0.5 to 0.6 volts.

<span class="mw-page-title-main">Solar panel</span> Assembly of photovoltaic cells used to generate electricity

A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that generate electrons when exposed to light. The electrons flow through a circuit and produce direct current (DC) electricity, which can be used to power various devices or be stored in batteries. Solar panels are also known as solar cell panels, solar electric panels, or PV modules.

<span class="mw-page-title-main">Solar panels on spacecraft</span> Photovoltaic solar panels on spacecraft operating in the inner solar system

Spacecraft operating in the inner Solar System usually rely on the use of power electronics-managed photovoltaic solar panels to derive electricity from sunlight. Outside the orbit of Jupiter, solar radiation is too weak to produce sufficient power within current solar technology and spacecraft mass limitations, so radioisotope thermoelectric generators (RTGs) are instead used as a power source.

<span class="mw-page-title-main">Solar shingle</span> Type of solar panel

Solar shingles, also called photovoltaic shingles, are solar panels designed to look like and function as conventional roofing materials, such as asphalt shingle or slate, while also producing electricity. Solar shingles are a type of solar energy solution known as building-integrated photovoltaics (BIPV).

Konarka Technologies, Inc. was a solar energy company based in Lowell, Massachusetts, founded in 2001 as a spin-off from University of Massachusetts Lowell. In late May 2012, the company filed for Chapter 7 bankruptcy protection and laid off its approximately 80-member staff. The company’s operations have ceased and a trustee is tasked with liquidating the company’s assets for the benefit of creditors.

<span class="mw-page-title-main">Building-integrated photovoltaics</span> Photovoltaic materials used to replace conventional building materials

Building-integrated photovoltaics (BIPV) are photovoltaic materials that are used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or facades. They are increasingly being incorporated into the construction of new buildings as a principal or ancillary source of electrical power, although existing buildings may be retrofitted with similar technology. The advantage of integrated photovoltaics over more common non-integrated systems is that the initial cost can be offset by reducing the amount spent on building materials and labor that would normally be used to construct the part of the building that the BIPV modules replace. In addition, BIPV allows for more widespread solar adoption when the building's aesthetics matter and traditional rack-mounted solar panels would disrupt the intended look of the building.

Organic photovoltaic devices (OPVs) are fabricated from thin films of organic semiconductors, such as polymers and small-molecule compounds, and are typically on the order of 100 nm thick. Because polymer based OPVs can be made using a coating process such as spin coating or inkjet printing, they are an attractive option for inexpensively covering large areas as well as flexible plastic surfaces. A promising low cost alternative to conventional solar cells made of crystalline silicon, there is a large amount of research being dedicated throughout industry and academia towards developing OPVs and increasing their power conversion efficiency.

<span class="mw-page-title-main">Thin-film solar cell</span> Type of second-generation solar cell

Thin-film solar cells are made by depositing one or more thin layers of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (µm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 µm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon.

<span class="mw-page-title-main">Renata Reisfeld</span> Israeli chemist

Renata Reisfeld is an Israeli Professor of Chemistry and D.H.C. Enrique Berman Professor of Solar Energy at Institute of Chemistry of the Hebrew University of Jerusalem, Israel, author of 532 scientific papers cited more than 30,000 times.

Skyline Solar was a Concentrated Photovoltaic (CPV) company based in Mountain View, California. The company developed medium-concentration photovoltaic systems to produce electricity for commercial, industrial and utility scale solar markets. The company was founded in 2007 by Bob MacDonald, Bill Keating and Eric Johnson. The operation of the company appears to have ceased in late 2012 and the website is deactivated.

A plasmonic-enhanced solar cell, commonly referred to simply as plasmonic solar cell, is a type of solar cell that converts light into electricity with the assistance of plasmons, but where the photovoltaic effect occurs in another material.

<span class="mw-page-title-main">Solar cell research</span> Research in the field of photovoltaics

There are currently many research groups active in the field of photovoltaics in universities and research institutions around the world. This research can be categorized into three areas: making current technology solar cells cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as more efficient energy converters from light energy into electric current or light absorbers and charge carriers.

<span class="mw-page-title-main">Solar-cell efficiency</span> Ratio of energy extracted from sunlight in solar cells

Solar-cell efficiency refers to the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell.

<span class="mw-page-title-main">Luminescent solar concentrator</span>

A luminescent solar concentrator (LSC) is a device for concentrating radiation, solar radiation in particular, to produce electricity. Luminescent solar concentrators operate on the principle of collecting radiation over a large area, converting it by luminescence and directing the generated radiation into a relatively small output target.

Sun-free photovoltaics is a photovoltaics technology which does not require sunlight to produce electricity. This technique was developed by research team at Massachusetts Institute of Technology. Photovoltaic cells convert light to electricity most efficiently at specific wavelengths. The surface features of Sun-free photovoltaics is engineered such that it converts heat energy into the specific wavelengths. This increases the efficiency of existing thermophotovoltaic (TPV) systems.

The following outline is provided as an overview of and topical guide to solar energy:

<span class="mw-page-title-main">Solar energy conversion</span>

Solar energy conversion describes technologies devoted to the transformation of solar energy to other (useful) forms of energy, including electricity, fuel, and heat. It covers light-harvesting technologies including traditional semiconductor photovoltaic devices (PVs), emerging photovoltaics, solar fuel generation via electrolysis, artificial photosynthesis, and related forms of photocatalysis directed at the generation of energy rich molecules.

References

  1. 1 2 3 4 5 Solar energy in Israel; It's a knockout, Jul 23rd 2009, The Economist print edition
  2. New tech could coat buildings in efficient solar-energy panels, Avi Bar-Eli, HaAretz, July 30, 2009