HRDetect

Last updated

HRDetect [1] (Homologous Recombination Deficiency Detect) is a whole-genome sequencing (WGS)-based classifier designed to predict BRCA1 and BRCA2 deficiency based on six mutational signatures. Additionally, the classifier is able to identify similarities in mutational profiles of tumors to that of tumors with BRCA1 and BRCA2 defects, also known as BRCAness. This classifier can be applied to assess the implementation of PARP [1] inhibitors in patients with BRCA1/BRCA2 deficiency. The final output is a probability of BRCA1/2 mutation.

Contents

Illustration of workflow to obtain HRDetect scores Hrdetectwf.png
Illustration of workflow to obtain HRDetect scores

Background

BRCA1/BRCA2

BRCA1 and BRCA2 play crucial roles in maintaining genome integrity, mainly through homologous recombination (HR) for DNA double-strand breaks (DSB)repair. The mutations of BRCA1 and BRCA2 can lead to a reduced capacity of HR machinery, increased genomic instability, and elicit a predisposition to malignancies. [2] People with BRCA1 and BRCA2 deficiency have higher risks of developing certain cancers such as breast and ovarian cancers. Germline defects in BRCA1/BRCA2 genes account for up to 5% of breast cancer cases. [1]

PARP inhibitors

Diagram illustrating synthetic lethality BRCA PARP twohit.jpg
Diagram illustrating synthetic lethality

Poly (ADP ribose) polymerase (PARP) inhibitors are designed to treat BRCA1- and BRCA2- defect tumors owing to their homologous recombination deficiency. [4] These drugs have been majorly implemented in breast and ovarian cancers, [5] and their clinical efficacy among patients with other types of cancers, such as pancreatic cancer, is still being investigated. [6] It is vital to identify adequate patients with BRCA1/BRCA2 deficiency to utilize PARP inhibitors optimally. PARP inhibitors operate on the concept of synthetic lethality where by selectively causing cell death in BRCA-mutant cells while sparing normal cells.

HRDetect

HRDetect was implemented to detect tumors with BRCA1/BRCA2 deficiency using the data from whole-genome sequencing. This model quantitatively aggregates six HRD-associated signatures into a single score called HRDetect to accurately classify breast cancers by their BRCA1 and BRCA2 status. The machine learning algorithm assigns weight values to these signatures prior to computing the final score. The six signatures, ranked by decreasing weight, include microhomology-mediated indels, the HRD index, base- substitution signature 3, rearrangement signature 3, rearrangement signature 5, and base- substitution signature 8. Additionally, this weighted approach is able to identify BRCAness, which refers to mutational phenotypes displaying homologous recombination deficiency similar to tumors with BRCA1/BRCA2 germline defects. [7]

Methodology

Input

HRDetect requires four types of inputs:

  1. Counts of mutations associated with each signature of single-base substitutions
  2. Indels with microhomology at the indel breakpoint junction, indels at polynucleotide-repeat tracts and other complex indels as proportions
  3. Counts of rearrangements associated with each signature
  4. HRD index (Arithmetic sum of loss of heterozygosity (LOH), telomeric-allelic imbalance (TAI), and large-scale state transitions (LST) scores)

Statistical Analysis

It is based on a supervised learning method using a lasso logistic regression model to distinguish samples into those with and without BRCA 1/2 deficiency. Optimal coefficients are obtained by minimizing the objective function.

Log Transformation

To account for a high substitution count in samples, the genomic data is first log transformed:

Standardization

The transformed data is then standardized to make mutational class values comparable giving each object a mean of 0 and a standard deviation (sd) of 1:

Lasso Logistical Regression Modelling

Weight distributions of input signatures Hrdweights.png
Weight distributions of input signatures

To be able to distinguish between those affected and not affected by BRCA1/BRCA2 deficiency, a lasso logistic regression model is used:

where:

: BRCA status of a sample || yi = 1 for BRCA1/BRCA2-null samples || yi = 0 otherwise
: Intercept, interpreted as the log of odds of = 1 when = 0
: Vector of weights
: Number of features characterizing each sample
: Number of samples
: Vector of features characterizing the ith sample
: Penalty promoting the sparseness of the weights
: L1 norm of the vector of weights

The β weights are constrained to be positive to reflect the presence of mutational actions due to BRCA1/BRCA2 defects. Setting the constraint of nonnegative weights ensures that all samples would be scored on the basis of the presence of relevant mutational signatures associated with BRCA1/BRCA2 deficiency, irrespective of whether these signatures are the dominant mutational process in the cancer.

HRDetect Score

Lastly, the weights obtained from the lasso regression are used to give a new sample a probabilistic score using the normalized mutational data and application of the model parameters(, ):

where:

 : variable encoding the status of the ith sample
 : Intercept weight
: Vector encoding features of the ith sample
: Vector of weights

Interpretation

The probability value quantifies the degree of BRCA1/BRCA2 defectiveness. A cut-off probability value should be chosen while maintaining a high sensitivity. These scores can be utilized to guide therapy.

Applications

Predicting Chemotherapeutic Outcomes

Mutations in genes responsible for HR are prevalent among human cancers. The BRCA1 and BRCA2 genes are centrally involved in HR, DNAdamage repair, end resection, and checkpoint signaling. Mutational signatures of HRD have been identified in over 20% of breast cancers, as well as pancreatic, ovarian, and gastric cancers. BRCA1/2 mutations confer sensitivity to platinum-based chemotherapies. HRDetect can independently trained to predict BRCA1/2 status, and has the capacity to predict outcomes on platinum-based chemotherapies. [8]

Breast Cancer

HRDetect was initially developed to detect tumors with BRCA1 and BRCA2 deficiency based on the data from whole-genome sequencing of a cohort of 560 breast cancer samples. Within this cohort, 22 patients were known to carry germline BRCA1/BRCA2 mutations. BRCA1/BRCA2- deficiency mutational signatures were found in more breast cancer patients than previously known. This model was able to identify 124 (22%) breast cancer patients showing BRCA1/2 mutational signatures in this cohort of 560 samples. Apart from the 22 known cases, an additional 33 patients showed deficiency with germline BRCA1/2 mutations, 22 patients displayed somatic mutation of BRCA1/2, and 47 were recognized to show functional defect without detected BRCA1/2 mutation. As a result, with an application of a probabilistic cut-off 0.7, HRDetect was able to demonstrate a 98.7% sensitivity recognizing BRCA1/2- deficient cases.

In contrast, germline mutations of BRCA1/2 are present in only 1~5% of breast cancer cases. Furthermore, these findings suggest that more breast cancer patients, as many as 1 in 5 (20%), may benefit from PARP inhibitors than a small percentage of patients currently given with the treatment. Cohort of 80 Breast cancer patients. 6 out of 7 are above HRDetect score 0.7.

Cohort of 80 Breast Cancer Samples

HRDetect was tested in 80 breast cancer cases with mainly ER positive and HER2 negative. The tool was able to find ones that exceed HRDetect score 0.7, including one germline BRCA1 mutation carrier, four germline BRCA2 mutation carriers and one somatic BRCA2 mutation carrier. The sensitivity of this tool also reached 86%.

Compatibility Across Cancers

HRDetect can be applied to other cancer types and yields adequate sensitivity. [6]

Ovarian Cancer

In a cohort of 73 patients with ovarian cancer, 30 patients were known to carry BRCA1/BRCA2 mutations and 46 (63%) patients were assessed by HRDetect to have HRDetect score over 0.7. The sensitivity of detecting BRCA1/2-deficient cancer was almost 100%, with an additional 16 cases identified.

Pancreatic Cancer

In a cohort of 96 patients with pancreatic cancers, 6 cases were known to have mutation or allele loss and 11 (11.5%) patients were identified by HRDetect to an exceed cutoff of 0.7. The study observed a similar result of sensitivity approaching 100%, with five other cases identified.

Advantages and Limitations

Advantages

Limitations

While it can be used with WES data, the sensitivity of detection falls considerably when not trained with such data. The sensitivity increases when training is performed with WES data however false-positive's are still identified.

Related Research Articles

<span class="mw-page-title-main">BRCA1</span> Gene known for its role in breast cancer

Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the BRCA1 gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. BRCA1 is a human tumor suppressor gene and is responsible for repairing DNA.

<span class="mw-page-title-main">Ovarian cancer</span> Cancer originating in or on the ovary

Ovarian cancer is a cancerous tumor of an ovary. It may originate from the ovary itself or more commonly from communicating nearby structures such as fallopian tubes or the inner lining of the abdomen. The ovary is made up of three different cell types including epithelial cells, germ cells, and stromal cells. When these cells become abnormal, they have the ability to divide and form tumors. These cells can also invade or spread to other parts of the body. When this process begins, there may be no or only vague symptoms. Symptoms become more noticeable as the cancer progresses. These symptoms may include bloating, vaginal bleeding, pelvic pain, abdominal swelling, constipation, and loss of appetite, among others. Common areas to which the cancer may spread include the lining of the abdomen, lymph nodes, lungs, and liver.

<span class="mw-page-title-main">BRCA2</span> Gene known for its role in breast cancer

BRCA2 and BRCA2 are a human gene and its protein product, respectively. The official symbol and the official name are maintained by the HUGO Gene Nomenclature Committee. One alternative symbol, FANCD1, recognizes its association with the FANC protein complex. Orthologs, styled Brca2 and Brca2, are common in other vertebrate species. BRCA2 is a human tumor suppressor gene, found in all humans; its protein, also called by the synonym breast cancer type 2 susceptibility protein, is responsible for repairing DNA.

<span class="mw-page-title-main">Loss of heterozygosity</span>

Loss of heterozygosity (LOH) is a type of genetic abnormality in diploid organisms in which one copy of an entire gene and its surrounding chromosomal region are lost. Since diploid cells have two copies of their genes, one from each parent, a single copy of the lost gene still remains when this happens, but any heterozygosity is no longer present.

<span class="mw-page-title-main">Oncogenomics</span> Sub-field of genomics

Oncogenomics is a sub-field of genomics that characterizes cancer-associated genes. It focuses on genomic, epigenomic and transcript alterations in cancer.

Triple-negative breast cancer (TNBC) is any breast cancer that either lacks or shows low levels of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) overexpression and/or gene amplification. Triple-negative is sometimes used as a surrogate term for basal-like.

<span class="mw-page-title-main">PARP1</span> Mammalian protein found in Homo sapiens

Poly [ADP-ribose] polymerase 1 (PARP-1) also known as NAD+ ADP-ribosyltransferase 1 or poly[ADP-ribose] synthase 1 is an enzyme that in humans is encoded by the PARP1 gene. It is the most abundant of the PARP family of enzymes, accounting for 90% of the NAD+ used by the family. PARP1 is mostly present in cell nucleus, but cytosolic fraction of this protein was also reported.

<span class="mw-page-title-main">PALB2</span> Protein-coding gene in the species Homo sapiens

Partner and localizer of BRCA2, also known as PALB2 or FANCN, is a protein which in humans is encoded by the PALB2 gene.

Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death or death of an organism. Although the foregoing explanation is wider than this, it is common when referring to synthetic lethality to mean the situation arising by virtue of a combination of deficiencies of two or more genes leading to cell death, whereas a deficiency of only one of these genes does not. In a synthetic lethal genetic screen, it is necessary to begin with a mutation that does not result in cell death, although the effect of that mutation could result in a differing phenotype, and then systematically test other mutations at additional loci to determine which, in combination with the first mutation, causes cell death arising by way of deficiency or abolition of expression.

<span class="mw-page-title-main">Olaparib</span> Chemical compound (cancer therapy drug)

Olaparib, sold under the brand name Lynparza, is a medication for the maintenance treatment of BRCA-mutated advanced ovarian cancer in adults. It is a PARP inhibitor, inhibiting poly ADP ribose polymerase (PARP), an enzyme involved in DNA repair. It acts against cancers in people with hereditary BRCA1 or BRCA2 mutations, which include some ovarian, breast, and prostate cancers.

<span class="mw-page-title-main">PARP inhibitor</span> Pharmacological enzyme inhibitors of poly (ADP-ribose) polymerases

PARP inhibitors are a group of pharmacological inhibitors of the enzyme poly ADP ribose polymerase (PARP).

<i>BRCA</i> mutation Medical condition

A BRCA mutation is a mutation in either of the BRCA1 and BRCA2 genes, which are tumour suppressor genes. Hundreds of different types of mutations in these genes have been identified, some of which have been determined to be harmful, while others have no proven impact. Harmful mutations in these genes may produce a hereditary breast–ovarian cancer syndrome in affected persons. Only 5–10% of breast cancer cases in women are attributed to BRCA1 and BRCA2 mutations, but the impact on women with the gene mutation is more profound. Women with harmful mutations in either BRCA1 or BRCA2 have a risk of breast cancer that is about five times the normal risk, and a risk of ovarian cancer that is about ten to thirty times normal. The risk of breast and ovarian cancer is higher for women with a high-risk BRCA1 mutation than with a BRCA2 mutation. Having a high-risk mutation does not guarantee that the woman will develop any type of cancer, or imply that any cancer that appears was actually caused by the mutation, rather than some other factor.

<span class="mw-page-title-main">Hereditary cancer syndrome</span> Inherited genetic condition that predisposes a person to cancer

A hereditary cancer syndrome is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancer and may also cause early onset of these cancers. Hereditary cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors.

<span class="mw-page-title-main">Talazoparib</span> Chemical compound

Talazoparib, sold under the brand name Talzenna, is an orally available poly ADP ribose polymerase (PARP) inhibitor marketed by Pfizer for the treatment of advanced breast cancer with germline BRCA mutations. Talazoparib is similar to the first in class PARP inhibitor, olaparib. It was approved in October 2018, in the United States and June 2019, in the European Union for germline BRCA-mutated, HER2-negative locally advanced or metastatic breast cancer.

<span class="mw-page-title-main">Prophylactic salpingectomy</span> Surgical technique

Prophylactic salpingectomy is a preventative surgical technique performed on patients who are at higher risk of having ovarian cancer, such as individuals who may have pathogenic variants of the BRCA1 or BRCA2 gene. Originally salpingectomy was used in cases of ectopic pregnancies. As a preventative surgery however, it involves the removal of the fallopian tubes. By not removing the ovaries this procedure is advantageous to individuals who are still of child bearing age. It also reduces risks such as cardiovascular disease and osteoporosis which are associated with removal of the ovaries.

Mutational signatures are characteristic combinations of mutation types arising from specific mutagenesis processes such as DNA replication infidelity, exogenous and endogenous genotoxin exposures, defective DNA repair pathways, and DNA enzymatic editing.

Susan M. Domchek is an oncologist at the University of Pennsylvania, Executive Director of the Basser Center for BRCA, the Basser Professor in Oncology at the Perelman School of Medicine, and Director of the Mariann and Robert MacDonald Cancer Risk Evaluation Program at Penn Medicine. She has authored more than 250 articles in scholarly journals and serves on a number of editorial review boards. In 2018, Domchek was elected to the National Academy of Medicine.

<span class="mw-page-title-main">Jórunn Erla Eyfjörð</span> Icelandic academic

Jórunn Erla Eyfjörð is an Icelandic molecular biologist and professor emerita at the Faculty of Medicine of the University of Iceland. She is known for her research on breast cancer genetics.

<span class="mw-page-title-main">Breast and ovarian cancer</span>

Breast and ovarian cancer does not necessarily imply that both cancers occur at the same time, but rather that getting one cancer would lead to the development of the other within a few years. Women with a history of breast cancer have a higher chance of developing ovarian cancer, vice versa.

<span class="mw-page-title-main">SEE-FIM Protocol</span> Pathology protocol to assess cancer risk

The SEE-FIM protocol is a pathology dissection protocol for Sectioning and Extensively Examining the Fimbria (SEE-FIM). This protocol is intended to provide for the optimal microscopic examination of the distal fallopian tube (fimbria) to identify either cancerous or precancerous conditions in this organ.

References

  1. 1 2 3 Davies, Helen; Glodzik, Dominik; Morganella, Sandro; Yates, Lucy R.; Staaf, Johan (April 2017). "HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures". Nature Medicine. 23 (4): 517–525. doi:10.1038/nm.4292. ISSN   1546-170X. PMC   5833945 . PMID   28288110.
  2. Venkitaraman, Ashok R. (2009-02-01). "Linking the Cellular Functions of BRCA Genes to Cancer Pathogenesis and Treatment". Annual Review of Pathology: Mechanisms of Disease. 4 (1): 461–487. doi:10.1146/annurev.pathol.3.121806.151422. ISSN   1553-4006. PMID   18954285.
  3. Frazier, Sonya (13 August 2016). "PARP inhibitors: Synthetic Lethality • theGIST". theGIST.
  4. Farmer, Hannah; McCabe, Nuala; Lord, Christopher J.; Tutt, Andrew N. J.; Johnson, Damian A.; Richardson, Tobias B.; Santarosa, Manuela; Dillon, Krystyna J.; Hickson, Ian; Knights, Charlotte; Martin, Niall M. B. (April 2005). "Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy". Nature. 434 (7035): 917–921. doi:10.1038/nature03445. ISSN   1476-4687. PMID   15829967. S2CID   4364706.
  5. Weil, Marcie K.; Chen, Alice (2011). "PARP Inhibitor Treatment in Ovarian and Breast Cancer". Current Problems in Cancer. 35 (1): 7–50. doi:10.1016/j.currproblcancer.2010.12.002. ISSN   0147-0272. PMC   3063418 . PMID   21300207.
  6. 1 2 Gupta, Medhavi; Iyer, Renuka; Fountzilas, Christos (2019-12-09). "Poly(ADP-Ribose) Polymerase Inhibitors in Pancreatic Cancer: A New Treatment Paradigms and Future Implications". Cancers. 11 (12): 1980. doi: 10.3390/cancers11121980 . ISSN   2072-6694. PMC   6966572 . PMID   31835379.
  7. Byrum, Andrea K.; Vindigni, Alessandro; Mosammaparast, Nima (2019-09-01). "Defining and Modulating 'BRCAness'". Trends in Cell Biology. 29 (9): 740–751. doi: 10.1016/j.tcb.2019.06.005 . ISSN   0962-8924. PMID   31362850. S2CID   199000212.
  8. Zhao, Eric Y.; Shen, Yaoqing; Pleasance, Erin; Kasaian, Katayoon; Leelakumari, Sreeja (14 December 2017). "Homologous Recombination Deficiency and Platinum-Based Therapy Outcomes in Advanced Breast Cancer". Clinical Cancer Research. 23 (24): 7521–7530. doi: 10.1158/1078-0432.CCR-17-1941 . PMID   29246904.