Harold M. Weintraub

Last updated
Harold M. Weintraub
Born
Harold M. Weintraub

June 2, 1945
Newark, New Jersey, United States of America
DiedMarch 28, 1995
Seattle, Washington, U.S.
Education Harvard University (AB)
University of Pennsylvania (MD, PhD)
Known for MyoD
Control of Cellular differentiation
Transcription (genetics)
Chromatin structure and function
Awards Eli Lilly Award in Biological Chemistry (1982)
Outstanding Investigator Grant, National Institutes of Health (1986)
Richard Lounsbery Award (1991)
Robert J. and Claire Pasarow Foundation Medical Research Award (1991)
Scientific career
Fields Molecular biology
Developmental Biology
Institutions MRC Laboratory of Molecular Biology
Princeton University
Fred Hutchinson Cancer Research Center
University of Washington
Doctoral advisor Howard Holtzer, Ph.D.

Harold M. "Hal" Weintraub was an American scientist who lived from 1945 until his death in 1995 from an aggressive brain tumor. Only 49 years old, Weintraub left behind a legacy of research. [1] [2] [3]

Contents

Early life and education

Born on June 2, 1945, in Newark, New Jersey, Weintraub's childhood revolved around sports, including basketball, an activity he would continue to particularly relish throughout his adult life. Weintraub was also the pitcher for an all-city high school baseball team, and a football fullback. [4]

Weintraub attended Harvard College, obtaining his bachelor's degree in 1967. [4] He then proceeded to the University of Pennsylvania, where he earned his M.D. and Ph.D. in 1972. [4] Weintraub performed his Ph.D. dissertation research in the laboratory of Howard Holtzer, [5] studying red blood cell development and production (erythropoeisis) in chicken embryos. This work included the study of cell cycle kinetics, hemoglobin synthesis, and the control of cell division. [6] The effects of bromodeoxyuridine on cell differentiation (conversion of a primitive cell into a more specialized cell) were also analyzed. [7] While still only a graduate student, Weintraub's early work contributed significantly to the fields of developmental and cellular biology, yielding numerous peer-reviewed publications and setting the stage for the next chapter in his research explorations. [1]

Research achievements

During his abbreviated career, Weintraub was the author of more than 130 scientific articles, most of which were in top-tier, peer-reviewed journals, including the "Big 3" basic science journals: Cell, Science, and Nature. [8] Weintraub was a member of the National Academy of Sciences, [9] and served as editorial advisor for numerous journals. [4]

Weintraub spent approximately a year at the Medical Research Council Laboratory of Molecular Biology in Cambridge, England, doing a postdoctoral fellowship in the laboratories of Sydney Brenner and Francis Crick. There, his studies of the nucleosome — a basic unit of DNA packaging — showed that its structure was altered when genes were actively transcribed. [1] Weintraub returned to the United States, and between the years 1973–1977 was an assistant professor at Princeton University. [10] His research at Princeton, which would continue during his years in Seattle, applied enzymatic and traditional biochemical isolation/separation techniques to clarify the relationship between the physical structure of genes and their expression (the process by which DNA is transcribed into messenger RNA, and eventually into Protein.) [11] Another avenue of research in Weintraub's lab studied the effects of oncoviruses on cellular gene expression. [12]

In 1978, Weintraub joined the Fred Hutchinson Cancer Research Center (FHCRC), established in 1971 as an independent affiliate of the University of Washington (UW), Seattle. He was a founding member of the Basic Sciences Division, and professor of genetics at UW. As described in an essay by Marc Kirschner, one of his former colleagues at Princeton, "When most of us left [Princeton] in the late 1970s, Hal, typically concerned more with research opportunity than with glamour, went to a young research institution where the practice of science would be paramount." [2] Weintraub remained at "the Hutch" (the nickname for FHCRC) until his death in 1995. In addition, from 1990 to 1995 Weintraub was a Howard Hughes Medical Institute Investigator. [13]

While at FHCRC, Weintraub continued and extended his prior studies of chromatin structure and function. [14] [15] [16] [17] Another of his contributions was developing the technique of using antisense RNA to create specific mutant phenotypes in vertebrate organisms. [18] [19] Perhaps the work for which Weintraub is best known was his laboratory's discovery and characterization of "myoD", the first master regulatory gene. When expressed, the myoD gene produces a protein referred to as MyoD (or MyoD1), which can bind certain DNA sequences, stop cell division, and elicit an entire program of muscle cell differentiation. In a series of sequential experiments, Weintraub and his students showed that myoD was able to convert fibroblasts (connective tissue cells) into myoblasts (skeletal muscle cells). [20] [21] Later studies by the same group of investigators at FHCRC further characterized the structural and functional characteristics of myoD and its nuclear-localized protein product, [22] [23] which were found to be present in organisms as diverse as nematode worms, frogs, mice, and humans. [24] During the final years of his life, Weintraub's work used myoD to delve broadly and deeply into the areas of regulatory proteins, gene expression, and the molecular control of cell differentiation. [25] [26] [27] [28] [29] [30] [31] As part of this work, his lab pioneered a molecular biology technique known as the Selection And Amplification Binding (SAAB) assay, which is used to find the DNA-binding sites for proteins. [32]

Biotechnology involvement

Along with chemist Peter Dervan of Caltech and developmental biologist Doug Melton of Harvard, Weintraub was one of three core scientific advisors to Michael L. Riordan, founder of Gilead Sciences, helping to establish the company's scientific vision at its founding during the late 1980s.

Death and legacy

Weintraub died on March 28, 1995, in Seattle, Washington, as a result of complications from glioblastoma multiforme, a very aggressive and fast-growing brain tumor. [10] He had only been diagnosed six months beforehand, undergoing neurosurgery in an attempt to curb its spread. [3] Weintraub was survived by his wife and two sons. [2] In the years that followed, several items were created in his memory:

Related Research Articles

<span class="mw-page-title-main">RecBCD</span> Family of protein complexes in bacteria

Exodeoxyribonuclease V is an enzyme of E. coli that initiates recombinational repair from potentially lethal double strand breaks in DNA which may result from ionizing radiation, replication errors, endonucleases, oxidative damage, and a host of other factors. The RecBCD enzyme is both a helicase that unwinds, or separates the strands of DNA, and a nuclease that makes single-stranded nicks in DNA. It catalyses exonucleolytic cleavage in either 5′- to 3′- or 3′- to 5′-direction to yield 5′-phosphooligonucleotides.

<span class="mw-page-title-main">Richard Axel</span> American molecular biologist

Richard Axel is an American molecular biologist and university professor in the Department of Neuroscience at Columbia University and investigator at the Howard Hughes Medical Institute. His work on the olfactory system won him and Linda Buck, a former postdoctoral research scientist in his group, the Nobel Prize in Physiology or Medicine in 2004.

<span class="mw-page-title-main">MyoD</span> Mammalian protein found in Homo sapiens

MyoD, also known as myoblast determination protein 1, is a protein in animals that plays a major role in regulating muscle differentiation. MyoD, which was discovered in the laboratory of Harold M. Weintraub, belongs to a family of proteins known as myogenic regulatory factors (MRFs). These bHLH transcription factors act sequentially in myogenic differentiation. Vertebrate MRF family members include MyoD1, Myf5, myogenin, and MRF4 (Myf6). In non-vertebrate animals, a single MyoD protein is typically found.

<span class="mw-page-title-main">Robert G. Roeder</span>

Robert G. Roeder is an American biochemist. He is known as a pioneer scientist in eukaryotic transcription. He discovered three distinct nuclear RNA polymerases in 1969 and characterized many proteins involved in the regulation of transcription, including basic transcription factors and the first mammalian gene-specific activator over five decades of research. He is the recipient of the Gairdner Foundation International Award in 2000, the Albert Lasker Award for Basic Medical Research in 2003, and the Kyoto Prize in 2021. He currently serves as Arnold and Mabel Beckman Professor and Head of the Laboratory of Biochemical and Molecular Biology at The Rockefeller University.

<span class="mw-page-title-main">Michael Stuart Brown</span> American geneticist and Nobel laureate

Michael Stuart Brown ForMemRS NAS AAA&S APS is an American geneticist and Nobel laureate. He was awarded the Nobel Prize in Physiology or Medicine with Joseph L. Goldstein in 1985 for describing the regulation of cholesterol metabolism.

<span class="mw-page-title-main">Myogenin</span> Mammalian protein found in Homo sapiens

Myogenin, is a transcriptional activator encoded by the MYOG gene. Myogenin is a muscle-specific basic-helix-loop-helix (bHLH) transcription factor involved in the coordination of skeletal muscle development or myogenesis and repair. Myogenin is a member of the MyoD family of transcription factors, which also includes MyoD, Myf5, and MRF4.

Myogenic regulatory factors (MRF) are basic helix-loop-helix (bHLH) transcription factors that regulate myogenesis: MyoD, Myf5, myogenin, and MRF4.

An E-box is a DNA response element found in some eukaryotes that acts as a protein-binding site and has been found to regulate gene expression in neurons, muscles, and other tissues. Its specific DNA sequence, CANNTG, with a palindromic canonical sequence of CACGTG, is recognized and bound by transcription factors to initiate gene transcription. Once the transcription factors bind to the promoters through the E-box, other enzymes can bind to the promoter and facilitate transcription from DNA to mRNA.

<span class="mw-page-title-main">RBBP4</span> Protein-coding gene in the species Homo sapiens

Histone-binding protein RBBP4 is a protein that in humans is encoded by the RBBP4 gene.

<span class="mw-page-title-main">PBX1</span> Protein found in humans

Pre-B-cell leukemia transcription factor 1 is a protein that in humans is encoded by the PBX1 gene. The homologous protein in Drosophila is known as extradenticle, and causes changes in embryonic development.

<span class="mw-page-title-main">EGLN2</span> Protein-coding gene in the species Homo sapiens

Egl nine homolog 2 is a protein that in humans is encoded by the EGLN2 gene. ELGN2 is an alpha-ketoglutarate-dependent hydroxylase, a superfamily of non-haem iron-containing proteins.

<span class="mw-page-title-main">HOXB5</span> Protein-coding gene in humans

Homeobox protein Hox-B5 is a protein that in humans is encoded by the HOXB5 gene.

<span class="mw-page-title-main">HOXA7</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-A7 is a protein that in humans is encoded by the HOXA7 gene.

<span class="mw-page-title-main">MXD1</span> Protein-coding gene in the species Homo sapiens

MAD protein is a protein that in humans is encoded by the MXD1 gene.

In molecular biology, a displacement loop or D-loop is a DNA structure where the two strands of a double-stranded DNA molecule are separated for a stretch and held apart by a third strand of DNA. An R-loop is similar to a D-loop, but in this case the third strand is RNA rather than DNA. The third strand has a base sequence which is complementary to one of the main strands and pairs with it, thus displacing the other complementary main strand in the region. Within that region the structure is thus a form of triple-stranded DNA. A diagram in the paper introducing the term illustrated the D-loop with a shape resembling a capital "D", where the displaced strand formed the loop of the "D".

<span class="mw-page-title-main">MDFI</span> Protein-coding gene in the species Homo sapiens

MyoD family inhibitor is a protein that in humans is encoded by the MDFI gene.

<span class="mw-page-title-main">Notch proteins</span>

Notch proteins are a family of type-1 transmembrane proteins that form a core component of the Notch signaling pathway, which is highly conserved in metazoans. The Notch extracellular domain mediates interactions with DSL family ligands, allowing it to participate in juxtacrine signaling. The Notch intracellular domain acts as a transcriptional activator when in complex with CSL family transcription factors. Members of this Type 1 transmembrane protein family share several core structures, including an extracellular domain consisting of multiple epidermal growth factor (EGF)-like repeats and an intracellular domain transcriptional activation domain (TAD). Notch family members operate in a variety of different tissues and play a role in a variety of developmental processes by controlling cell fate decisions. Much of what is known about Notch function comes from studies done in Caenorhabditis elegans (C.elegans) and Drosophila melanogaster. Human homologs have also been identified, but details of Notch function and interactions with its ligands are not well known in this context.

<span class="mw-page-title-main">HOXA2</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-A2 is a protein that in humans is encoded by the HOXA2 gene.

<span class="mw-page-title-main">MYF5</span> Protein-coding gene in the species Homo sapiens

Myogenic factor 5 is a protein that in humans is encoded by the MYF5 gene. It is a protein with a key role in regulating muscle differentiation or myogenesis, specifically the development of skeletal muscle. Myf5 belongs to a family of proteins known as myogenic regulatory factors (MRFs). These basic helix loop helix transcription factors act sequentially in myogenic differentiation. MRF family members include Myf5, MyoD (Myf3), myogenin, and MRF4 (Myf6). This transcription factor is the earliest of all MRFs to be expressed in the embryo, where it is only markedly expressed for a few days. It functions during that time to commit myogenic precursor cells to become skeletal muscle. In fact, its expression in proliferating myoblasts has led to its classification as a determination factor. Furthermore, Myf5 is a master regulator of muscle development, possessing the ability to induce a muscle phenotype upon its forced expression in fibroblastic cells.

Margaret Buckingham, is a British developmental biologist working in the fields of myogenesis and cardiogenesis. She is an honorary professor at the Pasteur Institute in Paris and emeritus director in the Centre national de la recherche scientifique (CNRS). She is a member of the European Molecular Biology Organization, the Academia Europaea and the French Academy of Sciences.

References

  1. 1 2 3 Axel, Richard; Maniatis, Thomas (1995). "Harold Weintraub (1945-1995)". Cell. 81 (3): 317–318. doi: 10.1016/0092-8674(95)90382-8 .
  2. 1 2 3 Kirschner, Marc (1995). "In memory of Harold Weintraub". Mol Biol Cell. 6 (7): 757–758. doi:10.1091/mbc.6.7.757. PMC   301238 . PMID   16562164.
  3. 1 2 Alberts, B (1995). "Harold M. Weintraub (1945-1995)". Nature. 375 (6526): 19. doi: 10.1038/375019a0 . PMID   7723834. S2CID   4032295.
  4. 1 2 3 4 Beers, Carole (April 1, 1995). "Dr. Harold Weintraub loved genes and jeans". The Seattle Times. Retrieved 11 November 2014.
  5. "Howard Holtzer, Ph.D. (deceased)". University of Pennsylvania - School of Medicine - Howard Holtzer, Ph.D. University of Pennsylvania. Retrieved 25 November 2014.
  6. Weintraub, H; Campbell Gle, M; Holtzer, H (1971). "Primitive erythropoiesis in early chick embryogenesis. I. Cell cycle kinetics and control of cell division". J Cell Biol. 50 (3): 652–668. doi:10.1083/jcb.50.3.652. PMC   2108311 . PMID   5098864.
  7. Weintraub, H; Campbell, GL; Holtzer, H (1972). "Identification of a developmental program using bromodeoxyuridine". J Mol Biol. 70 (2): 337–350. doi:10.1016/0022-2836(72)90543-8. PMID   5078575.
  8. Silberstein, S. D.; Calhoun, A. H.; Lipton, R. B.; Grosberg, B. M.; Cady, R. K.; Dorlas, S.; Simmons, K. A.; Mullin, C.; Liebler, E. J.; Goadsby, P. J.; Saper, J. R.; EVENT Study Group (2016). "Pub Med Search for Weintraub H*[Author]". Neurology. 87 (5): 529–538. doi:10.1212/WNL.0000000000002918. PMC   4970666 . PMID   27412146.
  9. "Harold Weintraub". National Academy of Sciences: Member Directory. Retrieved 22 January 2015.
  10. 1 2 Saxon, Wolfgang (March 31, 1995). "Harold Weintraub, 49, biologist who studied cell development". New York Times. Retrieved November 11, 2014.
  11. Weintraub, H; Groudine, M (1976). "Chromosomal subunits in active genes have an altered conformation". Science. 193 (4256): 848–856. Bibcode:1976Sci...193..848W. doi:10.1126/science.948749. PMID   948749.
  12. Groudine, M; Weintraub, H (1975). "Rous sarcoma virus activates embryonic globin genes in chick fibroblasts". Proc Natl Acad Sci USA. 72 (11): 4464–4468. Bibcode:1975PNAS...72.4464G. doi: 10.1073/pnas.72.11.4464 . PMC   388742 . PMID   172910.
  13. "Our Scientists". Howard Hughes Medical Institute. Retrieved 18 January 2015.
  14. Riley, D; Weintraub, H (1979). "Conservative segregation of parental histones during replication in the presence of cycloheximide". Proc Natl Acad Sci USA. 76 (1): 328–332. Bibcode:1979PNAS...76..328R. doi: 10.1073/pnas.76.1.328 . PMC   382932 . PMID   284348.
  15. Weisbrod, S; Weintraub, H (1979). "Isolation of a subclass of nuclear proteins responsible for conferring a DNAse I-sensitive structure on globin chromatin". Proc Natl Acad Sci USA. 76 (2): 630–634. Bibcode:1979PNAS...76..630W. doi: 10.1073/pnas.76.2.630 . PMC   383002 . PMID   284387.
  16. Seidman, MM; Levine, AJ; Weintraub, H (1979). "The asymmetric segregation of parental nucleosomes during chromosome replication". Cell. 18 (2): 439–49. doi:10.1016/0092-8674(79)90063-1. PMID   227608. S2CID   12405091.
  17. Weisbrod, S; Groudine, M; Weintraub, H (1980). "Interaction of HMG 14 and 17 with actively transcribed genes". Cell. 19 (1): 289–301. doi:10.1016/0092-8674(80)90410-9. PMID   6244103. S2CID   44743817.
  18. Harland, R; Weintraub, H (1985). "Translation of mRNA injected into Xenopus oocytes is specifically inhibited by antisense RNA". J Cell Biol. 101 (3): 1094–1099. doi:10.1083/jcb.101.3.1094. PMC   2113735 . PMID   2411734.
  19. Weintraub, HM (1990). "Antisense RNA and DNA". Sci Am. 262 (1): 40–46. Bibcode:1990SciAm.262a..40W. doi:10.1038/scientificamerican0190-40. PMID   1688469.
  20. Lassar, AB; Paterson, BM; Weintraub, H (1986). "Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts". Cell. 47 (5): 649–656. doi:10.1016/0092-8674(86)90507-6. PMID   2430720. S2CID   46395399.
  21. Tapscott, SJ; Davis, RL; Thayer, MJ; Cheng, PF; Weintraub, H; Lassar, AB (1988). "MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts". Science. 242 (4877): 405–411. Bibcode:1988Sci...242..405T. doi:10.1126/science.3175662. PMID   3175662.
  22. Thayer, MJ; Tapscott, SJ; Davis, RL; Wright, WE; Lassar, AB; Weintraub, H (1989). "Positive autoregulation of the myogenic determination gene MyoD1". Cell. 58 (2): 241–248. doi:10.1016/0092-8674(89)90838-6. PMID   2546677. S2CID   30089446.
  23. Lassar, AB; Buskin, JN; Lockshon, D; Davis, RL; Apone, S; Hauschka, SD; Weintraub, H (1989). "MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer". Cell. 58 (5): 823–831. doi:10.1016/0092-8674(89)90935-5. PMID   2550138. S2CID   27065049.
  24. Krause, M; Fire, A; White-Harrison, S; Weintraub, H; Tapscott, S (1992). "Functional conservation of nematode and vertebrate myogenic regulatory factors". J Cell Sci Suppl. 16: 111–115. doi: 10.1242/jcs.1992.supplement_16.13 . PMID   1338434.
  25. Lassar, AB; Thayer, MJ; Overell, RW; Weintraub, H (1989). "Transformation by activated ras or fos prevents myogenesis by inhibiting expression of MyoD1". Cell. 58 (4): 659–667. doi:10.1016/0092-8674(89)90101-3. PMID   2548731. S2CID   28627738.
  26. Sassoon, D; Lyons, G; Wright, WE; Lin, V; Lassar, A; Weintraub, H; Buckingham, M (1989). "Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis". Nature. 341 (6240): 303–307. Bibcode:1989Natur.341..303S. doi:10.1038/341303a0. PMID   2552320. S2CID   4335995.
  27. Benezra, R; Davis, RL; Lockshon, D; Turner, DL; Weintraub, H (1990). "The protein Id: a negative regulator of helix-loop-helix DNA binding proteins". Cell. 61 (1): 49–59. doi:10.1016/0092-8674(90)90214-y. PMID   2156629. S2CID   29514374.
  28. Weintraub, H; Hauschka, S; Tapscott, SJ (1991). "The MCK enhancer contains a p53 responsive element". Proc Natl Acad Sci USA. 88 (11): 4570–4571. Bibcode:1991PNAS...88.4570W. doi: 10.1073/pnas.88.11.4570 . PMC   51706 . PMID   1647009.
  29. Bengal, E; Ransone, L; Scharfmann, R; Dwarki, VJ; Tapscott, SJ; Weintraub, H; Verma, IM (1992). "Functional antagonism between c-Jun and MyoD proteins: a direct physical association". Cell. 68 (3): 507–519. doi:10.1016/0092-8674(92)90187-h. PMID   1310896. S2CID   44966899.
  30. Turner, DL; Weintraub, H (1994). "Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate". Genes Dev. 8 (12): 1434–1447. doi: 10.1101/gad.8.12.1434 . PMID   7926743.
  31. Zhuang, Y; Soriano, P; Weintraub, H (1994). "The helix-loop-helix gene E2A is required for B cell formation". Cell. 79 (5): 875–884. doi:10.1016/0092-8674(94)90076-0. PMID   8001124. S2CID   24890636.
  32. Blackwell, KT; Weintraub, H (1990). "Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection". Science. 250 (4984): 1104–1110. Bibcode:1990Sci...250.1104B. doi:10.1126/science.2174572. PMID   2174572.
  33. 1 2 "Weintraub Graduate Student Award". Fred Hutchinson Cancer Research Center: Basic Sciences Division. Retrieved 21 January 2015.
  34. "Center hosts 15th Weintraub reunion meeting Nov. 4, 5". Fred Hutchinson Cancer Research Center: Hutch News. 31 October 2011. Retrieved November 28, 2014.