Heliconius charithonia

Last updated

Zebra longwing
Heliconius charithonia 2021.jpg
Heliconius charithonia in Florida
Status TNC G5.svg
Secure  (NatureServe) [1]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Nymphalidae
Genus: Heliconius
Species:
H. charithonia
Binomial name
Heliconius charithonia
Synonyms
  • Papilio charithonia
  • Heliconius charithonius
  • Apostraphia charithoniaDyar, 1903

Heliconius charithonia, the zebra longwing or zebra heliconian, is a species of butterfly belonging to the subfamily Heliconiinae of the family Nymphalidae. [2] [3] It was first described by Carl Linnaeus in his 1767 12th edition of Systema Naturae. The boldly striped black and white wing pattern is aposematic, warning off predators. It is the state butterfly of Florida.

Contents

The species is distributed across South and Central America and as far north as southern Texas and peninsular Florida; there are migrations north into other American states in the warmer months. [4]

Zebra longwing adults roost communally at night in groups of up to 60 adults for safety from predators. The adult butterflies are unusual in feeding on pollen as well as on nectar; the pollen enables them to synthesize cyanogenic glycosides that make their bodies toxic to potential predators. Caterpillars feed on various species of passionflower, evading the plants' defensive trichomes by biting them off or laying silk mats over them.

The zebra longwing, Heliconius charithonia (Linnaeus),was designated the state butterfly of Florida in 1996. [4] However, mass spraying of naled has decimated the zebra longwing population in Miami-Dade County, Florida [ citation needed ]. There has been mass collapse of the colonies with impacts on the balance of the ecosystem. Further studies are needed to evaluate any potential for recolonization.

Feeding. Video clip
Zebra Longwings nectering

Description

The caterpillars are white with black spots and have numerous black spikes along their body. Adult butterflies are monomorphic of medium size with long wings. On the dorsal side, the wings are black with narrow white and yellow stripes, with a similar pattern on the ventral side, but paler and with red spots. The wingspan ranges from 72 to 100 mm. [5]

Distribution and habitat

H. charithonia is found in South America, Central America, the West Indies, Mexico, south Texas and peninsular Florida. Adults sometimes migrate north to New Mexico, South Carolina, and Nebraska during the warmer months. The geographic distribution of H. charithonia overlaps with the ranges of other butterflies which sometimes leads to conflict. For example, the ranges of H. charithonia and the gulf fritillary overlap; in some cases, gulf fritillaries can sometimes be subjected to competition and fighting from Heliconius charithonia vazquezae when those species have breeding populations in similar areas and within the same geographic range. [6] It was declared the official butterfly for the state of Florida in the United States in 1996. [2] [3] The species frequents tropical hammocks, moist forests, edges, or fields. [3]

Subspecies

Behavior

Migration

Although H. charithonia is to some extent static, maintaining a home range, adults do move between territories. [7] Butterflies with Mexican origins migrate north into Texas, following the retracting temperature gradient. Rainfall has no effect on migration patterns. Arrival dates and duration of stay depend on the distance traveled: the longer the distance traveled, the shorter the duration of stay. [8]

Roosting to deter predators

Adults roost in groups of up to 60 individuals on a nightly basis, returning to the same roost every night. These roosts provide protection to adults, the large groups deterring predators and retaining warmth. [9] Solitary individuals, or very small roosts, avoid exhibiting proper warning signals so as not to attract predators. [10] Pre-roosting interactions, which consist of sitting near one another, chasing each other briefly while fluttering, or basking, [11] occur between butterflies from separate roosts, indicating that the butterflies are aware of other roosts in their home range. Despite this, the zebra longwing chooses to form smaller aggregations. The optimal roost size for predator deterrence is five individuals; roost size is also influenced by resource availability and foraging. H. charithonia roosts to display collective aposematism, deterring predators by conspicuously advertising their unpalatable taste. [10]

Conspecific recognition

H. charithonia adults form communal roosts nightly. Communal roosting occurs when individuals aggregate at a particular site for more than a few hours. Roosting begins as early as three hours before sunset and usually ends within two hours after sunrise. [10] Since roosting is at night, adults need to be able to see at low light levels to locate roost sites, either when looking for twigs, tendrils, and dry leaves to land on to start a roost, or when searching for conspecifics that are already roosting. [12] Their eyes also help them to recognize color patterns in conspecifics. UV rhodopsins in the eye help them to distinguish between 3-OHK yellow pigments, or ultraviolet colors, and other yellow pigments, which to the human eye is indistinguishable. [13] At shorter distances, the butterflies recognize conspecifics via chemical cues. [12] These chemical cues include volatile and nonvolatile substances. The significance of this chemical communication remains largely unknown for Heliconius in general. However, in H. melpomene , (E)-?-ocimene was found to attract males and females in diurnal situations. [14]

Life cycle

Pollen feeding

The adults are unusual among butterflies in that they eat pollen as well as sip nectar. This ability contributes to their longevity—they can live up to 3 months as adults in the wild and 4–5 months in the lab. [15] The behavior facilitated the evolution of aposematism and mimicry among Heliconius species. Butterflies that feed on pollen are more distasteful to predators, more brightly colored, and show superior mimetic diversity to those that do not. [16]

Adult butterflies choose their home ranges based on collections of pollen plants. An adult collects pollen by inserting its proboscis into the flower while making particular movements to secure adhesion to the pollen grains. Digestion occurs immediately after ingestion when the pollen makes contact with saliva, and amino acids are dissolved. [17] Optimal amino acid intake occurs through abundant saliva production and gentle and slow mastication. [18] [ how? ] During the night, the butterflies digest pollen since optimal nutritional resources are obtained while resting or sleeping. [17]

Pollen feeding is correlated with higher overall fitness. Individuals that feed on pollen live longer than those that feed only on nectar or sugar water. Females carry more pollen than males since nutrients such as amino acids from pollen are needed for egg production. Oogenesis is greatly affected by pollen intake. When pollen is absent in the diet, oviposition rates decrease and lifetime fecundity, or the number of eggs produced, drops significantly. [17]

Pollen feeding also correlates with unpalatibility to predators. Amino acids from pollen are used as precursors to synthesize cyanogenic glycosides that are stored in larval and adult tissues, accounting for their toxicity. [16] When pollen availability is low, adult butterflies recycle cyanogenic glycosides they synthesized previously. With less expectation of pollen quality, females reallocate their cyanogens to reproductive input, as larvae benefit the most from cyanogenesis; a lack of amino acids in adult diet does not necessarily correlate with reduced cyanogenic defense. [19]

The caterpillar feeds on yellow passionflower ( Passiflora lutea ), corky-stemmed passionflower ( Passiflora suberosa ), and two-flower passionflower ( Passiflora biflora ). Larvae regulate their nutritional input to an equal protein-carbohydrate ratio. [20] They feed on the Passiflora plants on which their mother laid their eggs. Passiflora plants have trichomes, structures that reduce herbivore attack physically or chemically. H. charithonia larvae can avoid the effects of trichomes, being able to free themselves from the entrapment of a trichome by pulling their legs from the hold of the trichome hook, and laying silk mats on the trichomes, providing a surface to walk on more easily, and they remove the tips of the trichomes by biting them. Trichome tips are found in the faeces of these individuals. Larvae often try to avoid areas where trichome density is highest by staying on the under surface of the leaves. [21]


An unusual feature of the longwing, or heliconian, butterflies is that the adults are relatively long lived. Most other butterflies live only a few weeks, but heliconians continue to live and to lay eggs for several months. [22]

Mating system

Mating cues

Male butterflies seek visual, olfactory, tactile, and auditory cues from females during mating. [23] In H. charithonia, certain host plants provide these cues to males, thereby influencing the time and location of reproduction. This happens because as larvae damage the plant upon eating it, green-leaf volatiles, six carbon alcohols, aldehydes, and acetates, are released. They give olfactory cues to the male, thereby indicating the location of the pupae (mate). Since these pupae are camouflaged and lack strong sexual pheromones, males rely on the olfactory cue from the damaged plant to find mates. The odors also trigger the males to learn the location of the plant for future copulations. The butterfly's spatial memory is good enough to enable them to return regularly to roosts and mating sites. [24]

A common problem among all butterflies is to avoid mating with other butterfly species. [25] Mistakes are rare as males can distinguish between the emissions produced when the larvae and other herbivores eat the plant. The larvae release volatiles similar chemically to those emitted by the plant. [24] H. charithonia mating cues are controlled by multiple genes (they are pleiotropic), particularly in regards to Müllerian mimicry. [26]

Pupal mating

Adults exhibit pupal mating in which males wait for a female to emerge from her pupa. Upon emergence, two or more males may fight to win a copulation. The winner mates with the females and prevents other males from doing so through a chemical transfer, [3] [9] passing a nutrient-rich spermatophore to the female that reduces her attractiveness to other potential mates. [27]

Pupal mating arose exactly once during the evolution of Heliconius, and these species form a clade on the evolutionary tree. Although pupal mating is observed quite frequently in insectaries, it is rarely seen in nature. [28] Males perform precopulatory mate guarding behavior, in which males find and perch on pupae, followed by copulation with the female. [24]

Upon reaching the pupae, males often have to compete to copulate with the female, who is teneral (freshly emerged). Typically, a male visits the same pupa for at least a week, during which time he periodically swarms it, fighting with other males over positioning. Fights consist of males fending off other males that attempt to land on the same pupa by opening their wings. If this does not work, the male tries to throw the intruder off with the pressure of his head and antennae. If more males attempt to swarm the pupa, the two original males work together to fend off the others by simultaneously opening their wings, momentarily forgetting that they were originally competitors. Fights usually last one or two hours, but continue throughout the pupa's development.

The act of pupal mating consists of the male inserting his abdomen into the pupa. If a second male appears, he fends off other males by opening his wings while he copulates, rather than attempting to mate with the female himself by inserting his abdomen. After two or three hours of mating, the female comes out, and copulation continues for another hour. During the process, females remain relatively still, except for spreading their wings and discharging meconium. As copulation proceeds, fewer males attempt to approach the female. However, if this does occur, the copulating male continues to fend them off by opening his wings. After copulation is done, the male and female sit side by side for some time. During this brief period, no other males attempt to mate with the female. [28]

Nuptial gifts in the form of the spermatophore

Males transfer a protein-rich spermatophore to females upon mating. Spermatophores are nuptial gifts which serve different functions, one of which is to provide chemicals (cyanogens) that protect the mother and future offspring from predators. For females, this is beneficial because egg laying depletes her defensive chemicals. Among nine Heliconius species studied, H. charithonia had the highest average cyanide concentration in its spermatophores. [29]

In most species of butterflies, pheromones play a role in courtship and mate recognition, [23] and can play a role in deterring mates. Spermatophores contain anaphrodisiacs, pheromones that reduce the attractiveness of the females to subsequent males, indicating evolution driven by intrasexual selection between males. These reduce male harassment of mated females. Spermatophores contain nonfertile sperm (apyrene) to increase the anaphrodisiac effect. The transfer of anaphrodisiacs thus reduces female mating choice. [27]

Complete spermatophore degradation to an orange or yellow substance occurs in a two-week period. Pupal-mating butterflies like H. charithonia are thought to be monandrous; females rarely participate in more than one mating per lifetime. [30]

Sex ratio and distribution

At eclosion, the ratio is highly female biased, but the rest of the year the sex ratio is overall male biased (68% males). This is because males typically stay near their natal sites to find a mate, while females move around to find oviposition or feeding sites on Passiflora plants. Because females are very mobile, males rarely mate with relatives, and inbreeding rates are very low. [31]

See also

Related Research Articles

<i>Passiflora</i> Genus of flowering plants in the passion flower family

Passiflora, known also as the passion flowers or passion vines, is a genus of about 550 species of flowering plants, the type genus of the family Passifloraceae.

<span class="mw-page-title-main">Gulf fritillary</span> Sole species in brush-footed butterfly genus Agraulis

The Gulf fritillary or passion butterfly is a bright orange butterfly in the subfamily Heliconiinae of the family Nymphalidae. That subfamily was formerly set apart as a separate family, the Heliconiidae. The Heliconiinae are "longwing butterflies", which have long, narrow wings compared to other butterflies.

<i>Dryas iulia</i> Species of butterfly

Dryas iulia, commonly called the Julia butterfly, Julia heliconian, the flame, or flambeau, is a species of brush-footed butterfly. The sole representative of its genus Dryas, it is native from Brazil to southern Texas and Florida, and in summer can sometimes be found as far north as eastern Nebraska. Over 15 subspecies have been described.

<span class="mw-page-title-main">Sara longwing</span> Species of butterfly

The Sara longwing is a species of neotropical heliconiid butterfly found from Mexico to the Amazon Basin and southern Brazil. It is a colourful species: the dorsal wing surface is black with a large medial patch of metallic blue that is framed by two bands of white on the forewings. The ventral wing surface is a dull brown to black with muted bands and small red spots on the proximal margin; total wingspan is 55–60 mm.

<i>Heliconius erato</i> Species of butterfly

Heliconius erato, or the red postman, is one of about 40 neotropical species of butterfly belonging to the genus Heliconius. It is also commonly known as the small postman, the red passion flower butterfly, or the crimson-patched longwing. It was described by Carl Linnaeus in his 1758 10th edition of Systema Naturae.

<span class="mw-page-title-main">Queen (butterfly)</span> Species of butterfly

The queen butterfly is a North and South American butterfly in the family Nymphalidae with a wingspan of 80–85 mm. It is orange or brown with black wing borders and small white forewing spots on its dorsal wing surface, and reddish ventral wing surface fairly similar to the dorsal surface. The ventral hindwings have black veins and small white spots in a black border. The male has a black androconial scent patch on its dorsal hindwings. It can be found in meadows, fields, marshes, deserts, and at the edges of forests.

<i>Heliconius cydno</i> Species of butterfly

Heliconius cydno, the cydno longwing, is a nymphalid butterfly that ranges from Mexico to northern South America. It is typically found in the forest understory and deposits its eggs on a variety of plants of the genus Passiflora. It is a member of the Heliconiinae subfamily of Central and South America, and it is the only heliconiine that can be considered oligophagous. H. cydno is also characterized by hybridization and Müllerian mimicry. Wing coloration plays a key role in mate choice and has further implications in regards to sympatric speciation. Macrolide scent gland extracts and wing-clicking behavior further characterize this species.

<i>Anartia fatima</i> Species of butterfly

Anartia fatima, the banded peacock, is a butterfly in the family Nymphalidae. It is commonly found in south Texas, Mexico, and Central America but most studied in Costa Rica. This butterfly prefers subtropical climates and moist areas, such as near rivers. It spends much of its time in second-growth woodlands.

<i>Papilio demodocus</i> Species of butterfly

Papilio demodocus, the citrus swallowtail or Christmas butterfly, is a swallowtail butterfly which commonly occurs over the entirety of sub-Saharan Africa, including Madagascar, besides the southern Arabian Peninsula. The caterpillars feed on various native plants of especially the family Rutaceae, but have also taken to the leaves of cultivated citrus trees.

<i>Heliconius</i> Genus of brush-footed butterflies

Heliconius comprises a colorful and widespread genus of brush-footed butterflies commonly known as the longwings or heliconians. This genus is distributed throughout the tropical and subtropical regions of the New World, from South America as far north as the southern United States. The larvae of these butterflies eat passion flower vines (Passifloraceae). Adults exhibit bright wing color patterns which signal their distastefulness to potential predators.

<i>Heliconius melpomene</i> Species of butterfly

Heliconius melpomene, the postman butterfly, common postman or simply postman, is a brightly colored, geographically variable butterfly species found throughout Central and South America. It was first described by Carl Linnaeus in his 1758 10th edition of Systema Naturae. Its coloration coevolved with another member of the genus, H. erato as a warning to predators of its inedibility; this is an example of Müllerian mimicry. H. melpomene was one of the first butterfly species observed to forage for pollen, a behavior that is common in other insect groups but rare in butterflies. Because of the recent rapid evolutionary radiation of the genus Heliconius and overlapping of its habitat with other related species, H. melpomene has been the subject of extensive study on speciation and hybridization. These hybrids tend to have low fitness as they look different from the original species and no longer exhibit Müllerian mimicry.

<span class="mw-page-title-main">Variable checkerspot</span> Species of butterfly

The variable checkerspot or Chalcedon checkerspot is a butterfly in the family Nymphalidae. It is found in western North America, where its range stretches from Alaska in the north to Baja California in the south and extends east through the Rocky Mountains into Colorado, Montana, New Mexico and Wyoming. The butterfly is usually brown or black with extensive white and yellow checkering and some red coloration on the dorsal wing. Adult wingspan is 3.2–5.7 cm (1.3–2.2 in). Adult butterflies feed on nectar from flowers while larvae feed on a variety of plants including snowberry (Symphoricarpos), paintbrush (Castilleja), Buddleja, Diplacus aurantiacus and Scrophularia californica.

<i>Jalmenus evagoras</i> Species of butterfly

Jalmenus evagoras, the imperial hairstreak, imperial blue, or common imperial blue, is a small, metallic blue butterfly of the family Lycaenidae. It is commonly found in eastern coastal regions of Australia. This species is notable for its unique mutualism with ants of the genus Iridomyrmex. The ants provide protection for juveniles and cues for adult mating behavior. They are compensated with food secreted from J. evagoras larvae. The ants greatly enhance the survival and reproductive success of the butterflies. J. evagoras lives and feeds on Acacia plants, so butterfly populations are localized to areas with preferred species of both host plants and ants.

<i>Utetheisa ornatrix</i> Species of moth

Utetheisa ornatrix, also called the ornate bella moth, ornate moth, bella moth or rattlebox moth, is a moth of the subfamily Arctiinae. It is aposematically colored ranging from pink, red, orange and yellow to white coloration with black markings arranged in varying patterns on its wings. It has a wingspan of 33–46 mm. Moths reside in temperate midwestern and eastern North America as well as throughout Mexico and other parts of Central America. Unlike most moths, the bella moth is diurnal. Formerly, the bella moth or beautiful utetheisa of temperate eastern North America was separated as Utetheisa bella. Now it is united with the bella moth in Utetheisa ornatrix.

<span class="mw-page-title-main">Mating plug</span> Gelatinous secretion used in the mating of some species

A mating plug, also known as a copulation plug, sperm plug, vaginal plug, or sphragis, is a gelatinous secretion used in the mating of some species. It is deposited by a male into a female genital tract, such as the vagina, and later hardens into a plug or glues the tract together. While females can expel the plugs afterwards, the male's sperm still gets a time advantage in getting to the egg, which is often the deciding factor in fertilization.

<span class="mw-page-title-main">External morphology of Lepidoptera</span> External features of butterflies and moths

The external morphology of Lepidoptera is the physiological structure of the bodies of insects belonging to the order Lepidoptera, also known as butterflies and moths. Lepidoptera are distinguished from other orders by the presence of scales on the external parts of the body and appendages, especially the wings. Butterflies and moths vary in size from microlepidoptera only a few millimetres long, to a wingspan of many inches such as the Atlas moth. Comprising over 160,000 described species, the Lepidoptera possess variations of the basic body structure which has evolved to gain advantages in adaptation and distribution.

<i>Heliconius hecalesia</i> Species of butterfly

Heliconius hecalesia, the five-spotted longwing, is a species of butterfly of the family Nymphalidae. It is found from Central America to Venezuela and Ecuador.

<i>Heliconius hortense</i> Species of butterfly

Heliconius hortense, the Mexican longwing, Mexican heliconian or mountain longwing, is a heliconiid butterfly.

The Spirogyra Butterfly Farm Park Garden,, located in San Francisco de Goicoechea, on the edge of Rio Torres, north of Zoológico Simón Bolívar, in Barrio Amon, Carmen District, San José, Costa Rica, is a butterfly house that houses from 50 to 60 different species of live butterflies from around the country in a climate-controlled, glass-enclosed habitat.

<i>Heliconius eleuchia</i> Species of butterfly

Heliconius eleuchia, the white-edged longwing, is a species of Heliconius butterfly described by William Chapman Hewitson in 1853.

References

  1. "NatureServe Explorer 2.0 - Heliconius charithonia, Zebra Longwing". explorer.natureserve.org. Retrieved 9 May 2020.
  2. 1 2 Beccaloni, G.; Scoble, M.; Kitching, I.; Simonsen, T.; Robinson, G.; Pitkin, B.; Hine, A.; Lyal, C., eds. (2003). "Heliconius charithonia". The Global Lepidoptera Names Index . Natural History Museum . Retrieved May 16, 2018.
  3. 1 2 3 4 "Attributes of Heliconius charithonia" . Retrieved November 14, 2013.
  4. 1 2 Moisset, Beatriz. "Zebra Longwing Butterfly". U.S. Forestry Service. Retrieved 18 October 2023.
  5. "Zebra Longwing" . Retrieved November 14, 2013.
  6. Ross, Gary N.; Fales, Henry M.; Lloyd, Helen A.; Jones, Tappey; Sokoloski, Edward A.; Marshall-Batty, Kimberly; Blum, Murray S. (June 2001). "Novel Chemistry of Abdominal Defensive Glands of Nymphalid Butterfly Agraulis vanillae". Journal of Chemical Ecology. 27 (6): 1219–1228. doi:10.1023/A:1010372114144. PMID   11504024. S2CID   2815219.
  7. Kronforst, Marcus R.; Fleming, Theodore H. (2001). "Lack of Genetic Differentiation among Widely Spaced Subpopulations of a Butterfly with Home Range Behaviour". Heredity. 86 (2): 243–50. doi: 10.1046/j.1365-2540.2001.00830.x . PMID   11380670.
  8. Cardoso, Márcio Z (2008). "Reconstructing Seasonal Range Expansion of the Tropical Butterfly, Heliconius charithonia, into Texas Using Historical Records". Journal of Insect Science. 10 (69): 1–8. doi:10.1673/031.010.6901. PMC   3383412 . PMID   20672989.
  9. 1 2 "Zebra Heliconian-Florida's State Butterfly!". Archived from the original on August 13, 2013. Retrieved November 14, 2013.
  10. 1 2 3 Finkbeiner, Susan D.; Briscoe, Adriana D.; Reed, Robert D. (2012). "The Benefit of Being a Social Butterfly: Communal Roosting Deters Predation". Proceedings of the Royal Society B: Biological Sciences. 279 (1739): 2769–776. doi:10.1098/rspb.2012.0203. PMC   3367783 . PMID   22438492.
  11. Sacledo, Christian (2011). "Behavioral Traits Expressed During Heliconius Butterflies Roost-Assembly". Trop. Lepid. Res. 21 (2): 80–83.
  12. 1 2 Salcledo, Christian (2010). "Environmental Elements Involved in Communal Roosting in Heliconius Butterflies (Lepidoptera: Nymphalidae)". Environmental Entomology. 39 (3): 907–11. doi:10.1603/EN09340. PMID   20550805. S2CID   40169498.
  13. Bybee, Seth M.; Monica D. Furong Yuan; Jorge Llorente-Bousquets; Robert D. Reed; Daniel Osorio; Adriana D. Briscoe (2012). "UV Photoreceptors and UV-Yellow Wing Pigments in Heliconius Butterflies Allow a Color Signal to Serve Both Mimicry and Intraspecific Communication". The American Naturalist. 1. 179 (1): 38–51. doi:10.1086/663192. PMID   22173459. S2CID   205998104.
  14. Sacledo, Christian. The Biology of Heliconius Night Roosting A Foundation. Thesis. UFDC, 2010. Gainesville, Fl: University of Florida, 2010. Print.
  15. Scott, JA. (1986). The Butterflies of North America: A Natural History and Field Guide. Stanford University Press.
  16. 1 2 Estrada, Catalina; Jiggins, Chris D. (2002). "Patterns of Pollen Feeding and Habitat Preference among Heliconius Species". Ecological Entomology. 27 (4): 448–56. Bibcode:2002EcoEn..27..448E. doi: 10.1046/j.1365-2311.2002.00434.x . S2CID   84938497.
  17. 1 2 3 Salcledo, Christian. "Evidence of Pollen Digestion at Nocturnal Aggregations of Heliconius Sara in Costa Rica (Lepidoptera: Nymphalidae)." Trop. Lepid. Res. 20.1 (2010): 35-37. Web.
  18. Belatrán, Margarita; Jiggins, Chris D.; Brower, Andrew V. Z.; Bermingham, Eldredge; Mallet, James (2007). "Do Pollen Feeding, Pupal-mating, and Larval Gregariousness Have a Single Origin in Heliconius Butterflies? Inferences from Multilocus DNA Sequence Data". Biological Journal of the Linnean Society. 92 (2): 221–39. doi: 10.1111/j.1095-8312.2007.00830.x .
  19. Cardoso, M. Z. (2013). "Pollen Feeding, Resource Allocation and the Evolution of Chemical Defence in Passion Vine Butterflies". Journal of Evolutionary Biology. 26 (6): 1254–260. doi:10.1111/jeb.12119. PMID   23662837. S2CID   206046558.
  20. VanOverbeke, Dustin R. "Nutritional Ecology of a Generalist Herbivore Vanessa Cardui Linnaeus Lepidoptera: Nymphalidae on Variable Larval and Adult Diets." Diss. UC Riverside, 2011.
  21. Cardoso, Márcio Z (2008). "Ecology, Behavior and Binomics: Herbivore Handling of a Plant's Trichome: The Case of Heliconius charithonia (L.) (Lepidoptera:Nymphalidae) and Passiflora Lobata (Kilip) Hutch. (Passifloraceae)". Neotropical Entomology. 37 (3): 247–52. doi: 10.1590/s1519-566x2008000300002 . PMID   18641894.
  22. "Zebra Longwing Butterfly". www.fs.usda.gov. Retrieved 2023-10-22.
  23. 1 2 Douglas, Matthew M. (1986). The Lives of Butterflies . Ann Arbor: University of Michigan. ISBN   9780472100781.
  24. 1 2 3 Estrada, Catalina; Gilbert, Lawrence E. (2010). "Host Plants and Immatures as Mate-searching Cues in Heliconius Butterflies". Animal Behaviour. 80 (2): 231–239. doi:10.1016/j.anbehav.2010.04.023. S2CID   53147646.
  25. Boggs, Carol L., Ward B. Watt, and Paul R. Ehrlich. (2003). Butterflies: Ecology and Evolution Taking Flight. Chicago: University of Chicago.
  26. Scoble, M. J. (1995). The Lepidoptera: Form, Function and Diversity. [London]: Natural History Museum
  27. 1 2 Estrada, Catalina; Schulz, Stefan; Yildizhan, Selma; Gilbert, Lawrence E. (2011). "Sexual Selection Drives The Evolution Of Antiaphrodisiac Pheromones In Butterflies". Evolution. 65 (10): 2843–854. doi: 10.1111/j.1558-5646.2011.01352.x . PMID   21967426. S2CID   37752151.
  28. 1 2 Sourakov, Andrei (2008). "Pupal Mating in Zebra Longwing (Heliconius charithonia): Photographic Evidence". News of the Lepidopterists' Society. 50 (1): 26–32.
  29. Cardoso, Márcio Zikán; Gilbert, Lawrence E. (2006). "A Male Gift to Its Partner? Cyanogenic Glycosides in the Spermatophore of Longwing Butterflies (Heliconius)". Naturwissenschaften. 94 (1): 39–42. doi:10.1007/s00114-006-0154-6. PMID   16957921. S2CID   39830226.
  30. Walters, James R.; Stafford, Christine; Hardcastle, Thomas J.; Jiggins, Chris D. (2012). "Evaluating Female Remating Rates in Light of Spermatophore Degradation in Heliconius Butterflies: Pupal-mating Monandry versus Adult-mating Polyandry". Ecological Entomology. 37 (4): 257–68. Bibcode:2012EcoEn..37..257W. doi: 10.1111/j.1365-2311.2012.01360.x . S2CID   85187078.
  31. Fleming, Theodore H.; Serrano, David; Nassar, Jafet (2005). "Dynamics Of A Subtropical Population Of The Zebra Longwing Butterfly Heliconius charithonia (Nymphalidae)". Florida Entomologist. 88 (2): 169–79. doi: 10.1653/0015-4040(2005)088[0169:doaspo]2.0.co;2 .