Hexachlorodisilane

Last updated
Hexachlorodisilane
Si2Cl6.png
Names
IUPAC name
Hexachlorodisilane
Other names
Perchlorodisilane
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.353 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-704-1
PubChem CID
UNII
  • InChI=1S/Cl6Si2/c1-7(2,3)8(4,5)6
    Key: LXEXBJXDGVGRAR-UHFFFAOYSA-N
  • [Si]([Si](Cl)(Cl)Cl)(Cl)(Cl)Cl
Properties
Si2Cl6
Molar mass 268.88 g/mol
AppearanceColorless liquid
Melting point −1 °C (30 °F; 272 K)
Boiling point 144 °C (291 °F; 417 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Hexachlorodisilane is the inorganic compound with the chemical formula Si2Cl6. [1] It is a colourless liquid that fumes in moist air. It has specialty applications in as a reagent and as a volatile precursor to silicon metal.

Contents

Structure and synthesis

The molecule adopts a structure like ethane, with a single Si-Si bond length of 233 pm. [2]

Hexachlorodisilane is produced in the chlorination of silicides such as e.g. calcium silicide. Idealized syntheses are as follows: [3]

CaSi2 + 4 Cl2 → Si2Cl6 + CaCl2

Reactions and uses

Hexachlorodisilane is stable under air or nitrogen at temperatures of at least up to 400°C for several hours, but decomposes to dodecachloroneopentasilane and silicon tetrachloride in presence of Lewis bases even at room temperature. [4]

4 Si2Cl6 → 3 SiCl4 + Si5Cl12

This conversion is useful in making silicon-based components of use in semiconducting devices including photovoltaic cells. [1]

The compound is also useful reagent for the deoxygenation reactions, such as this general process involving a phosphine oxide:

2 Si2Cl6 + OPR3 → OSi2Cl6 + PR3

Related Research Articles

<span class="mw-page-title-main">Silicon</span> Chemical element, symbol Si and atomic number 14

Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic table: carbon is above it; and germanium, tin, lead, and flerovium are below it. It is relatively unreactive.

Silane is an inorganic compound with chemical formula, SiH4. It is a colourless, pyrophoric, toxic gas with a sharp, repulsive smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Silane with alkyl groups are effective water repellents for mineral surfaces such as concrete and masonry. Silanes with both organic and inorganic attachments are used as coupling agents.

<span class="mw-page-title-main">Trichlorosilane</span> Chemical compound

Trichlorosilane is an inorganic compound with the formula HCl3Si. It is a colourless, volatile liquid. Purified trichlorosilane is the principal precursor to ultrapure silicon in the semiconductor industry. In water, it rapidly decomposes to produce a siloxane polymer while giving off hydrochloric acid. Because of its reactivity and wide availability, it is frequently used in the synthesis of silicon-containing organic compounds.

Silicon tetrachloride or tetrachlorosilane is the inorganic compound with the formula SiCl4. It is a colourless volatile liquid that fumes in air. It is used to produce high purity silicon and silica for commercial applications.

Tungsten(VI) fluoride, also known as tungsten hexafluoride, is an inorganic compound with the formula WF6. It is a toxic, corrosive, colorless gas, with a density of about 13 grams per litre (0.00047 lb/cu in) (roughly 11 times heavier than air. It is one of the densest known gases under standard conditions. WF6 ls commonly used by the semiconductor industry to form tungsten films, through the process of chemical vapor deposition. This layer is used in a low-resistivity metallic "interconnect". It is one of seventeen known binary hexafluorides.

<span class="mw-page-title-main">Titanium tetrachloride</span> Inorganic chemical compound

Titanium tetrachloride is the inorganic compound with the formula TiCl4. It is an important intermediate in the production of titanium metal and the pigment titanium dioxide. TiCl4 is a volatile liquid. Upon contact with humid air, it forms thick clouds of titanium dioxide and hydrochloric acid, a reaction that was formerly exploited for use in smoke machines. It is sometimes referred to as "tickle" or "tickle 4" due to the phonetic resemblance of its molecular formula to the word.

Tin(IV) chloride, also known as tin tetrachloride or stannic chloride, is an inorganic compound with the formula SnCl4. It is a colorless hygroscopic liquid, which fumes on contact with air. It is used as a precursor to other tin compounds. It was first discovered by Andreas Libavius (1550–1616) and was known as spiritus fumans libavii.

Chlorosilanes are a group of reactive, chlorine-containing chemical compounds, related to silane and used in many chemical processes. Each such chemical has at least one silicon-chlorine bond. Trichlorosilane is produced on the largest scale. The parent chlorosilane is silicon tetrachloride.

<span class="mw-page-title-main">Hafnium tetrachloride</span> Chemical compound

Hafnium(IV) chloride is the inorganic compound with the formula HfCl4. This colourless solid is the precursor to most hafnium organometallic compounds. It has a variety of highly specialized applications, mainly in materials science and as a catalyst.

Boron trichloride is the inorganic compound with the formula BCl3. This colorless gas is a reagent in organic synthesis. It is highly reactive toward water.

<span class="mw-page-title-main">Vanadium oxytrichloride</span> Chemical compound

Vanadium oxytrichloride is the inorganic compound with the formula VOCl3. This yellow distillable liquid hydrolyzes readily in air. It is an oxidizing agent. It is used as a reagent in organic synthesis. Samples often appear red or orange owing to an impurity of vanadium tetrachloride.

Disilane is a chemical compound with chemical formula Si2H6 that was identified in 1902 by Henri Moissan and Samuel Smiles (1877–1953). Moissan and Smiles reported disilane as being among the products formed by the action of dilute acids on metal silicides. Although these reactions had been previously investigated by Friedrich Woehler and Heinrich Buff between 1857 and 1858, Moissan and Smiles were the first to explicitly identify disilane. They referred to disilane as silicoethane. Higher members of the homologous series SinH2n+2 formed in these reactions were subsequently identified by Carl Somiesky (sometimes spelled "Karl Somieski") and Alfred Stock.

<span class="mw-page-title-main">Phosphine oxide</span> Class of chemical compounds

Phosphine oxides are phosphorus compounds with the formula OPX3. When X = alkyl or aryl, these are organophosphine oxides. Triphenylphosphine oxide is an example. An inorganic phosphine oxide is phosphoryl chloride (POCl3).

Titanium disilicide (TiSi2) is an inorganic chemical compound of titanium and silicon.

Copper silicide can refer to either Cu4Si or pentacopper silicide, Cu5Si.

Dimethyldichlorosilane is a tetrahedral, organosilicon compound with the formula Si(CH3)2Cl2. At room temperature it is a colorless liquid that readily reacts with water to form both linear and cyclic Si-O chains. Dimethyldichlorosilane is made on an industrial scale as the principal precursor to dimethylsilicone and polysilane compounds.

<span class="mw-page-title-main">Silicon tetrabromide</span> Chemical compound

Silicon tetrabromide is the inorganic compound with the formula SiBr4. This colorless liquid has a suffocating odor due to its tendency to hydrolyze with release of hydrogen bromide. The general properties of silicon tetrabromide closely resemble those of the more commonly used silicon tetrachloride.

In chemistry, redistribution usually refers to the exchange of anionic ligands bonded to metal and metalloid centers. The conversion does not involve redox, in contrast to disproportionation reactions. Some useful redistribution reactions are conducted at higher temperatures; upon cooling the mixture, the product mixture is kinetically frozen and the individual products can be separated. In cases where redistribution is rapid at mild temperatures, the reaction is less useful synthetically but still important mechanistically.

<span class="mw-page-title-main">Silicon tetraazide</span> Chemical compound

Silicon tetraazide is a thermally unstable binary compound of silicon and nitrogen with a nitrogen content of 85.7%. This high-energy compound combusts spontaneously and can only be studied in a solution. A further coordination to a six-fold coordinated structure such as a hexaazidosilicate ion [Si(N3)6]2− or as an adduct with bicationic ligands Si(N3)4·L2 will result in relatively stable, crystalline solids that can be handled at room temperature.

<span class="mw-page-title-main">Diboron tetrachloride</span> Chemical compound

Diboron tetrachloride is a chemical compound with the formula B2Cl4. It is a colorless liquid.

References

  1. 1 2 Simmler, W. "Silicon Compounds, Inorganic", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH. doi : 10.1002/14356007.a24_001
  2. T.L. Cottrell, "The Strengths of Chemical Bonds," 2nd ed., Butterworths, London, 1958
  3. Seo, E.S.M; Andreoli, M; Chiba, R (2003). "Silicon tetrachloride production by chlorination method using rice husk as raw material". Journal of Materials Processing Technology. 141 (3): 351. doi:10.1016/S0924-0136(03)00287-5.
  4. Emeleus, H. J., and Muhammad Tufail. "Reaction of Hexachlorodisilane with Bases and Alkyl Halides." Journal of Inorganic and Nuclear Chemistry 29.8 (1967): 2081-084