History of bioelectricity

Last updated

The history of bioelectricity dates back to ancient Egypt, where the shocks delivered by the electric catfish were used medicinally.

Contents

In the 18th century, the abilities of the torpedo ray and the electric eel were investigated by scientists including Hugh Williamson and John Walsh.

Fish that give shocks

Ancient Egypt

Electric catfish (centre) in Mastaba of Ti bas-relief, Saqqara, ancient Egypt Electric catfish in Mastaba of Ti bas-relief detail.jpg
Electric catfish (centre) in Mastaba of Ti bas-relief, Saqqara, ancient Egypt

The electric catfish of the Nile was well known to the ancient Egyptians. [2] The Egyptians reputedly used the electric shock from them when treating arthritic pain. [3] They would use only smaller fish, as a large fish may generate an electric shock from 300 to 400 volts. The Egyptians depicted the fish in their mural paintings and elsewhere; [2] the first known depiction of an electric catfish is on a slate palette of the predynastic Egyptian ruler Narmer about 3100 BC. [4] [1]

Ancient Greece and Rome

Electric fishes were known to Aristotle, Theophrastus, and Pliny the Elder among other classical authors. They did not always distinguish between the marine torpedo ray and the freshwater electric catfish. [1]

Eighteenth century

The naturalists Bertrand Bajon, a French military surgeon in French Guiana and the Jesuit Ramón M. Termeyer  [ pl ] in the River Plate basin conducted early experiments on the numbing discharges of electric eels in the 1760s. [5] In 1775, the "torpedo" (the electric ray) was studied by John Walsh; [6] both fish were dissected by the surgeon and anatomist John Hunter. [6] [7] Hunter informed the Royal Society that "Gymnotus Electricus ... appears very much like an eel ... but it has none of the specific properties of that fish." [7] He observed that there were "two pair of these [electric] organs, a larger [the main organ] and a smaller [Hunter's organ]; one being placed on each side", and that they occupied "perhaps ... more than one-third of the whole animal [by volume]". [7] He described the structure of the organs (stacks of electrocytes) as "extremely simple and regular, consisting of two parts; viz. flat partitions or septa, and cross divisions between them." He measured the electrocytes as 1/17 of an inch thick (1.5 mm) in the main organ, and 1/56 of an inch thick (0.5 mm) in Hunter's organ. [7]

Also in 1775, the American physician and politician Hugh Williamson, who had studied with Hunter, [8] presented a paper "Experiments and observations on the Gymnotus Electricus, or electric eel" at the Royal Society. He reported a series of experiments, such as "7. In order to discover whether the eel killed those fish by an emission of the same [electrical] fluid with which he affected my hand when I had touched him, I put my hand into the water, at some distance from the eel; another cat-fish was thrown into the water; the eel swam up to it ... [and] gave it a shock, by which it instantly turned up its belly, and continued motionless; at that very instant I felt such a sensation in the joints of my fingers as in experiment 4." and "12. Instead of putting my hand into the water, at a distance from the eel, as in the last experiment, I touched its tail, so as not to offend it, while my assistant touched its head more roughly; we both received a severe shock." [9]

Galvanism

The studies by Williamson, Walsh, and Hunter appear to have influenced the thinking of Luigi Galvani and Alessandro Volta – the founders of electrophysiology and electrochemistry. [6] [10]

Nineteenth century

In 1800, Alexander von Humboldt joined a group of indigenous people who went fishing with horses, some thirty of which they chased into the water. The pounding of the horses' hooves, he noted, drove the electric eels, up to five feet (1.5 metres) long, out of the mud and prompted them to attack, rising out of the water and using their electricity to shock the horses. He saw two horses stunned by the shocks and then drowned. The electric eels, having given many shocks, "now require long rest and plenty of nourishment to replace the loss of galvanic power they have suffered", "swam timidly to the bank of the pond", and were easily caught using small harpoons on ropes. [12]

In 1839, the chemist Michael Faraday extensively tested the electrical properties of an electric eel imported from Suriname. For a span of four months, he measured the electrical impulses produced by the animal by pressing shaped copper paddles and saddles against the specimen. Through this method, he determined and quantified the direction and magnitude of electric current, and proved that the animal's impulses were electrical by observing sparks and deflections on a galvanometer. He observed the electric eel increasing the shock by coiling about its prey, the prey fish "representing a diameter" across the coil. He likened the quantity of electric charge released by the fish to "the electricity of a Leyden battery of fifteen jars, containing 3500 square inches of glass coated on both sides, charged to its highest degree" [13]

The German zoologist Carl Sachs was sent to Latin America by the physiologist Emil du Bois-Reymond, to study the electric eel; [14] he took with him a galvanometer and electrodes to measure the fish's electric organ discharge, and used rubber gloves ("Kautschuck-Handschuhen") to enable him to catch the fish without being shocked, to the surprise of the local people. He published his research on the fish, including his discovery of what is now called Sachs' organ, in 1877. [15] [16]

Electroreception

Hans Lissmann discovered electroreception in 1950 through his observations of Gymnarchus niloticus. Gymnarchus niloticus005 (cropped).JPG
Hans Lissmann discovered electroreception in 1950 through his observations of Gymnarchus niloticus .

In 1678, while doing dissections of sharks, the Italian physician Stefano Lorenzini discovered organs on their heads, now called ampullae of Lorenzini. He published his findings in Osservazioni intorno alle torpedini. [18] The electroreceptive function of these organs was established by R. W. Murray in 1960. [19] [20]

In 1921, the German anatomist Viktor Franz described the knollenorgans (tuberous organs) in the skin of the elephantfishes, again without knowledge of their function as electroreceptors. [21]

In 1949, the Ukrainian-British zoologist Hans Lissmann noticed that the African knife fish (Gymnarchus niloticus) was able to swim backwards at the same speed and with the same dexterity around obstacles as when it swam forwards, avoiding collisions. He demonstrated in 1950 that the fish was producing a variable electric field, and that the fish reacted to any change in the electric field around it. [17] [22]

Related Research Articles

<span class="mw-page-title-main">Electricity</span> Phenomena related to electric charge

Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

<span class="mw-page-title-main">Luigi Galvani</span> Italian physician, physicist, and philosopher

Luigi Galvani was an Italian physician, physicist, biologist and philosopher, who studied animal electricity. In 1780, he discovered that the muscles of dead frogs' legs twitched when struck by an electrical spark. This was an early study of bioelectricity, following experiments by John Walsh and Hugh Williamson.

<span class="mw-page-title-main">Gymnotiformes</span> Order of bony fishes

The Gymnotiformes are an order of teleost bony fishes commonly known as Neotropical knifefish or South American knifefish. They have long bodies and swim using undulations of their elongated anal fin. Found almost exclusively in fresh water, these mostly nocturnal fish are capable of producing electric fields to detect prey, for navigation, communication, and, in the case of the electric eel, attack and defense. A few species are familiar to the aquarium trade, such as the black ghost knifefish, the glass knifefish, and the banded knifefish.

<i>Electrophorus electricus</i> South American electric fish

Electrophorus electricus is the best-known species of electric eel. It is a South American electric fish. Until the discovery of two additional species in 2019, the genus was classified as the monotypic, with this species the only one in the genus. Despite the name, it is not an eel, but rather a knifefish. It is considered as a freshwater teleost which contains an electrogenic tissue that produces electric discharges.

<span class="mw-page-title-main">Electric ray</span> Order of cartilaginous fishes

The electric rays are a group of rays, flattened cartilaginous fish with enlarged pectoral fins, composing the order Torpediniformes. They are known for being capable of producing an electric discharge, ranging from 8 to 220 volts, depending on species, used to stun prey and for defense. There are 69 species in four families.

<span class="mw-page-title-main">Lateral line</span> Sensory system in fish

The lateral line, also called the lateral line organ (LLO), is a system of sensory organs found in fish, used to detect movement, vibration, and pressure gradients in the surrounding water. The sensory ability is achieved via modified epithelial cells, known as hair cells, which respond to displacement caused by motion and transduce these signals into electrical impulses via excitatory synapses. Lateral lines play an important role in schooling behavior, predation, and orientation.

<span class="mw-page-title-main">Electric fish</span> Fish that can generate electric fields

An electric fish is any fish that can generate electric fields. Most electric fish are also electroreceptive, meaning that they can sense electric fields. The only exception is the stargazer family (Uranoscopidae). Electric fish, although a small minority of all fishes, include both oceanic and freshwater species, and both cartilaginous and bony fishes.

<span class="mw-page-title-main">Electroreception and electrogenesis</span> Biological electricity-related abilities

Electroreception and electrogenesis are the closely related biological abilities to perceive electrical stimuli and to generate electric fields. Both are used to locate prey; stronger electric discharges are used in a few groups of fishes to stun prey. The capabilities are found almost exclusively in aquatic or amphibious animals, since water is a much better conductor of electricity than air. In passive electrolocation, objects such as prey are detected by sensing the electric fields they create. In active electrolocation, fish generate a weak electric field and sense the different distortions of that field created by objects that conduct or resist electricity. Active electrolocation is practised by two groups of weakly electric fish, the Gymnotiformes (knifefishes) and the Mormyridae (elephantfishes), and by Gymnarchus niloticus, the African knifefish. An electric fish generates an electric field using an electric organ, modified from muscles in its tail. The field is called weak if it is only enough to detect prey, and strong if it is powerful enough to stun or kill. The field may be in brief pulses, as in the elephantfishes, or a continuous wave, as in the knifefishes. Some strongly electric fish, such as the electric eel, locate prey by generating a weak electric field, and then discharge their electric organs strongly to stun the prey; other strongly electric fish, such as the electric ray, electrolocate passively. The stargazers are unique in being strongly electric but not using electrolocation.

<span class="mw-page-title-main">Electric catfish</span> Family of fishes

Electric catfish or Malapteruridae is a family of catfishes. This family includes two genera, Malapterurus and Paradoxoglanis, with 21 species. Several species of this family have the ability to generate electricity, delivering a shock of up to 350 volts from its electric organ. Electric catfish are found in tropical Africa and the Nile River. Electric catfish are usually nocturnal and carnivorous. Some species feed primarily on other fish, incapacitating their prey with electric discharges, but others are generalist bottom foragers, feeding on things like invertebrates, fish eggs, and detritus. The largest can grow to about 1.2 meters long, but most species are far smaller.

<span class="mw-page-title-main">Ampullae of Lorenzini</span> Sensory organs in some fish that detect electrical fields

Ampullae of Lorenzini are electroreceptors, sense organs able to detect electric fields. They form a network of mucus-filled pores in the skin of cartilaginous fish and of basal bony fishes such as reedfish, sturgeon, and lungfish. They are associated with and evolved from the mechanosensory lateral line organs of early vertebrates. Most bony fishes and terrestrial vertebrates have lost their ampullae of Lorenzini.

<span class="mw-page-title-main">Amphibious fish</span> Fish that can leave water for a time

Amphibious fish are fish that are able to leave water for extended periods of time. About 11 distantly related genera of fish are considered amphibious. This suggests that many fish genera independently evolved amphibious traits, a process known as convergent evolution. These fish use a range of terrestrial locomotory modes, such as lateral undulation, tripod-like walking, and jumping. Many of these locomotory modes incorporate multiple combinations of pectoral-, pelvic-, and tail-fin movement.

<span class="mw-page-title-main">Mormyridae</span> Family of fishes

The Mormyridae, sometimes called "elephantfish", are a superfamily of weakly electric fish in the order Osteoglossiformes native to Africa. It is by far the largest family in the order, with around 200 species. Members of the family can be popular, if challenging, aquarium species. These fish have a large brain size and unusually high intelligence.

<span class="mw-page-title-main">Hans Lissmann (zoologist)</span> British zoologist

Hans Werner Lissmann FRS was a British zoologist of Ukrainian provenance, specialising in animal behaviour.

<span class="mw-page-title-main">Electric organ (fish)</span> Organ in electric fish

In biology, the electric organ is an organ that an electric fish uses to create an electric field. Electric organs are derived from modified muscle or in some cases nerve tissue, called electrocytes, and have evolved at least six times among the elasmobranchs and teleosts. These fish use their electric discharges for navigation, communication, mating, defence, and in strongly electric fish also for the incapacitation of prey.

<span class="mw-page-title-main">Marbled electric ray</span> Species of cartilaginous fish

The marbled electric ray is a species of electric ray in the family Torpedinidae found in the coastal waters of the eastern Atlantic Ocean from the North Sea to South Africa. This benthic fish inhabits rocky reefs, seagrass beds, and sandy and muddy flats in shallow to moderately deep waters. It can survive in environments with very little dissolved oxygen, such as tidal pools. The marbled electric ray has a nearly circular pectoral fin disc and a muscular tail that bears two dorsal fins of nearly equal size and a large caudal fin. It can be identified by the long, finger-like projections on the rims of its spiracles, as well as by its dark brown mottled color pattern, though some individuals are plain-colored. Males and females typically reach 36–38 cm (14–15 in) and 55–61 cm (22–24 in) long respectively.

<span class="mw-page-title-main">Knollenorgan</span>

A Knollenorgan is an electroreceptor in the skin of weakly electric fish of the family Mormyridae (Elephantfish) from Africa. The structure was first described by Viktor Franz (1921), a German anatomist unaware of its function. They are named after "Knolle", German for "tuberous root" which describes their structure.

Most fish possess highly developed sense organs. Nearly all daylight fish have colour vision that is at least as good as a human's. Many fish also have chemoreceptors that are responsible for extraordinary senses of taste and smell. Although they have ears, many fish may not hear very well. Most fish have sensitive receptors that form the lateral line system, which detects gentle currents and vibrations, and senses the motion of nearby fish and prey. Sharks can sense frequencies in the range of 25 to 50 Hz through their lateral line.

<span class="mw-page-title-main">Communication in aquatic animals</span>

Communication occurs when an animal produces a signal and uses it to influences the behaviour of another animal. A signal can be any behavioural, structural or physiological trait that has evolved specifically to carry information about the sender and/or the external environment and to stimulate the sensory system of the receiver to change their behaviour. A signal is different from a cue in that cues are informational traits that have not been selected for communication purposes. For example, if an alerted bird gives a warning call to a predator and causes the predator to give up the hunt, the bird is using the sound as a signal to communicate its awareness to the predator. On the other hand, if a rat forages in the leaves and makes a sound that attracts a predator, the sound itself is a cue and the interaction is not considered a communication attempt.

<span class="mw-page-title-main">Electric eel</span> Genus of fishes in South America

The electric eels are a genus, Electrophorus, of neotropical freshwater fish from South America in the family Gymnotidae. They are known for their ability to stun their prey by generating electricity, delivering shocks at up to 860 volts. Their electrical capabilities were first studied in 1775, contributing to the invention in 1800 of the electric battery.

Carl Sachs was a German zoologist, known for his discovery of what is now called Sachs' organ in the electric eel.

References

  1. 1 2 3 Kellaway, Peter (July 1946). "The Part Played by Electric Fish in the Early History of Bioelectricity and Electrotherapy". Bulletin of the History of Medicine. 20 (2): 112–137. PMID   20277440.
  2. 1 2 Boulenger, George Albert (1911). "Cat-fish"  . In Chisholm, Hugh (ed.). Encyclopædia Britannica . Vol. 5 (11th ed.). Cambridge University Press. pp. 512–515.
  3. "Malapterurus electricus". ScotsCat. 3 April 2013. Retrieved 15 March 2017.
  4. Howes, George J. (1985). "The phylogenetic relationships of the electric catfish family Malapteruridae (Teleostei: Siluroidei)". Journal of Natural History. 19: 37–67. doi:10.1080/00222938500770031.
  5. de Asúa, Miguel (9 April 2008). "The Experiments of Ramón M. Termeyer SJ on the Electric Eel in the River Plate Region (c. 1760) and other Early Accounts of Electrophorus electricus". Journal of the History of the Neurosciences. 17 (2): 160–174. doi:10.1080/09647040601070325. PMID   18421634.
  6. 1 2 3 Edwards, Paul (10 November 2021). "A Correction to the Record of Early Electrophysiology Research on the 250th Anniversary of a Historic Expedition to Île de Ré". HAL open-access archive. hal-03423498. Retrieved 6 May 2022.
  7. 1 2 3 4 5 Hunter, John (1775). "An account of the Gymnotus electricus". Philosophical Transactions of the Royal Society of London (65): 395–407.
  8. VanderVeer, Joseph B. (6 July 2011). "Hugh Williamson: Physician, Patriot, and Founding Father". Journal of the American Medical Association. 306 (1). doi:10.1001/jama.2011.933.
  9. Williamson, Hugh (1775). "Experiments and observations on the Gymnotus electricus, or electric eel". Philosophical Transactions of the Royal Society . 65 (65): 94–101. doi:10.1098/rstl.1775.0011. S2CID   186211272.
  10. Alexander, Mauro (1969). "The role of the voltaic pile in the Galvani-Volta controversy concerning animal vs. metallic electricity". Journal of the History of Medicine and Allied Sciences . XXIV (2): 140–150. doi:10.1093/jhmas/xxiv.2.140. PMID   4895861.
  11. David Ames Wells, The science of common things: a familiar explanation of the first, 323 pages ( page 290)
  12. 1 2 von Humboldt, Alexander (1859). Alexander von Humboldt's Reise in die Aequinoctial-Gegenden des neuen Continents [Alexander von Humboldt's Journey in the Equinoctial Regions of the New Continent] (in German). Vol. 1. Stuttgart: J. G. Cotta'scher Verlag. pp. 404–406.
  13. 1 2 Faraday, Michael (1839). "Experimental Researches in Electricity, Fifteenth Series". Philosophical Transactions of the Royal Society . 129: 1–12. doi: 10.1098/rstl.1839.0002 .
  14. Veitch, J. (1879). "Hume". Nature. 19 (490): 453–456. Bibcode:1879Natur..19..453V. doi:10.1038/019453b0. S2CID   244639967.
  15. Sachs, Carl (1877). "Beobachtungen und versuche am südamerikanischen zitteraale (Gymnotus electricus)" [Observations and research on the South American electric eel (Gymnotus electricus)]. Archives of Anatomy and Physiology (in German): 66–95.
  16. Xu, Jun; Cui, Xiang; Zhang, Huiyuan (18 March 2021). "The third form electric organ discharge of electric eels". Scientific Reports . 11 (1): 6193. doi:10.1038/s41598-021-85715-3. PMC   7973543 . PMID   33737620.
  17. 1 2 Alexander, R. McNeill (2006). "A new sense for muddy water". Journal of Experimental Biology . 2006 209: 200-201, doi: 10.1242/jeb.10.1242/jeb.02012 (2): 200–201. doi: 10.1242/jeb.10.1242/jeb.02012 . PMID   16391343.
  18. Lorenzini, Stefano (1678). Osservazioni intorno alle torpedini. Florence, Italy: Per l'Onofri. doi:10.5962/bhl.title.6883. OCLC   2900213.
  19. Murray, R. W. (September 1960). "Electrical sensitivity of the ampullae of Lorenzini". Nature . 187 (4741): 957. Bibcode:1960Natur.187..957M. doi: 10.1038/187957a0 . PMID   13727039.
  20. Murray, R. W. (March 1962). "The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation". The Journal of Experimental Biology. 39: 119–28. doi:10.1242/jeb.39.1.119. PMID   14477490.
  21. Franz, Viktor (1921). "Zur mikroscopischen Anatomie der Mormyriden". Zoologisch Jahrbuch Abteilung für Anatomie und Ontogonie. 42: 91–148.
  22. Lissmann, Hans. "Continuous Electrical Signals from the Tail of a Fish, Gymnarchus Niloticus Cuv", in: Nature , 167, 4240 (1951), pp. 201–202.