History of mineralogy

Last updated

Early writing on mineralogy, especially on gemstones, comes from ancient Babylonia, the ancient Greco-Roman world, ancient and medieval China, and Sanskrit texts from ancient India. [1] Books on the subject included the Naturalis Historia of Pliny the Elder which not only described many different minerals but also explained many of their properties. The German Renaissance specialist Georgius Agricola wrote works such as De re metallica (On Metals, 1556) and De Natura Fossilium (On the Nature of Rocks, 1546) which began the scientific approach to the subject. Systematic scientific studies of minerals and rocks developed in post-Renaissance Europe. [2] The modern study of mineralogy was founded on the principles of crystallography and microscopic study of rock sections with the invention of the microscope in the 17th century. [2]

Contents

Europe and the Middle East

Theophrastus Theophrastus2.jpg
Theophrastus

The ancient Greek writers Aristotle (384–322 BC) and Theophrastus (370–285 BC) were the first in the Western tradition to write of minerals and their properties, as well as metaphysical explanations for them. The Greek philosopher Aristotle wrote his Meteorologica , and in it theorized that all the known substances were composed of water, air, earth, and fire, with the properties of dryness, dampness, heat, and cold. [3] The Greek philosopher and botanist Theophrastus wrote his De Mineralibus, which accepted Aristotle's view, and divided minerals into two categories: those affected by heat and those affected by dampness. [3]

The metaphysical emanation and exhalation (anathumiaseis) theory of Aristotle included early speculation on earth sciences including mineralogy. According to his theory, while metals were supposed to be congealed by means of moist exhalation, dry gaseous exhalation (pneumatodestera) was the efficient material cause of minerals found in the Earth's soil. [4] He postulated these ideas by using the examples of moisture on the surface of the earth (a moist vapor 'potentially like water'), while the other was from the earth itself, pertaining to the attributes of hot, dry, smoky, and highly combustible ('potentially like fire'). [4] Aristotle's metaphysical theory from times of antiquity had wide-ranging influence on similar theory found in later medieval Europe, as the historian Berthelot notes:

The theory of exhalations was the point of departure for later ideas on the generation of metals in the earth, which we meet with Proclus, and which reigned throughout the middle ages. [1]

Fibrous asbestos on muscovite Asbestos with muscovite.jpg
Fibrous asbestos on muscovite

Ancient Greek terminology of minerals has also stuck through the ages with widespread usage in modern times. For example, the Greek word asbestos (meaning 'inextinguishable', or 'unquenchable'), for the unusual mineral known today containing fibrous structure. [5] The ancient historians Strabo (63 BC–19 AD) and Pliny the Elder (23–79 AD) both wrote of asbestos, its qualities, and its origins, with the Hellenistic belief that it was of a type of vegetable. [5] Pliny the Elder listed it as a mineral common in India, while the historian Yu Huan (239–265 AD) of China listed this 'fireproof cloth' as a product of ancient Rome or Arabia (Chinese: Daqin). [5] Although documentation of these minerals in ancient times does not fit the manner of modern scientific classification, there was nonetheless extensive written work on early mineralogy.

Pliny the Elder

Octahedral shape of diamond Rough diamond.jpg
Octahedral shape of diamond
Baltic amber necklace with trapped insects Baltic Amber necklace with insects inclusions.jpg
Baltic amber necklace with trapped insects

For example, Pliny devoted five entire volumes of his work Naturalis Historia (77 AD) to the classification of "earths, metals, stones, and gems". [6] He not only describes many minerals not known to Theophrastus, but discusses their applications and properties. He is the first to correctly recognise the origin of amber for example, as the fossilised remnant of tree resin from the observation of insects trapped in some samples. He laid the basis of crystallography by discussing crystal habit, especially the octahedral shape of diamond. His discussion of mining methods is unrivalled in the ancient world, and includes, for example, an eye-witness account of gold mining in northern Spain, an account which is fully confirmed by modern research.

However, before the more definitive foundational works on mineralogy in the 16th century, the ancients recognized no more than roughly 350 minerals to list and describe. [7]

Jabir and Avicenna

Islamic alchemists advanced the sulfur-mercury theory of metals, a theory that is first found in pseudo-Apollonius of Tyana's Sirr al-khalīqa (The Secret of Creation, c. 750–850) and in the Arabic writings attributed to Jābir ibn Ḥayyān (written c. 850–950). [8] It would remain the basis of all theories of metallic composition until the eighteenth century. [9]

With philosophers such as Proclus, the theory of Neoplatonism also spread to the Islamic world during the Middle Ages, providing a basis for metaphysical ideas on mineralogy in the medieval Middle East as well. The medieval Islamic scientists expanded upon this as well, including the Persian scientist Ibn Sina (ابوعلى سينا/پورسينا) (980-1037 AD), also known as Avicenna, who rejected alchemy and the earlier notion of Greek metaphysics that metallic and other elements could be transformed into one another. [1] However, what was largely accurate of the ancient Greek and medieval metaphysical ideas on mineralogy was the slow chemical change in composition of the Earth's crust. [1]

Georgius Agricola, 'Father of Mineralogy'

Agricola, author of De re metallica Georgius Agricola.jpg
Agricola, author of De re metallica

In the early 16th century AD, the writings of the German scientist Georg Bauer, pen-name Georgius Agricola (1494-1555 AD), in his Bermannus, sive de re metallica dialogus (1530) is considered to be the official establishment of mineralogy in the modern sense of its study. He wrote the treatise while working as a town physician and making observations in Joachimsthal, which was then a center for mining and metallurgic smelting industries. In 1544, he published his written work De ortu et causis subterraneorum, which is considered to be the foundational work of modern physical geology. In it (much like Ibn Sina) he heavily criticized the theories laid out by the ancient Greeks such as Aristotle. His work on mineralogy and metallurgy continued with the publication of De veteribus et novis metallis in 1546, and culminated in his best known works, the De re metallica of 1556. It was an impressive work outlining applications of mining, refining, and smelting metals, alongside discussions on geology of ore bodies, surveying, mine construction, and ventilation. He praises Pliny the Elder for his pioneering work Naturalis Historia and makes extensive references to his discussion of minerals and mining methods. For the next two centuries this written work remained the authoritative text on mining in Europe.

Agricola had many various theories on mineralogy based on empirical observation, including understanding of the concept of ore channels that were formed by the circulation of ground waters ('succi') in fissures subsequent to the deposition of the surrounding rocks. [10] As will be noted below, the medieval Chinese previously had conceptions of this as well.

For his works, Agricola is posthumously known as the "Father of Mineralogy".

After the foundational work written by Agricola, it is widely agreed by the scientific community that the Gemmarum et Lapidum Historia of Anselmus de Boodt (1550–1632) of Bruges is the first definitive work of modern mineralogy. [7] The German mining chemist J.F. Henckel wrote his Flora Saturnisans of 1760, which was the first treatise in Europe to deal with geobotanical minerals, although the Chinese had mentioned this in earlier treatises of 1421 and 1664. [11] In addition, the Chinese writer Du Wan made clear references to weathering and erosion processes in his Yun Lin Shi Pu of 1133, long before Agricola's work of 1546. [12]

China and the Far East

In ancient China, the oldest literary listing of minerals dates back to at least the 4th century BC, with the Ji Ni Zi book listing twenty four of them. [13] Chinese ideas of metaphysical mineralogy span back to at least the ancient Han Dynasty (202 BC–220 AD). From the 2nd century BC text of the Huai Nan Zi, the Chinese used ideological Taoist terms to describe meteorology, precipitation, different types of minerals, metallurgy, and alchemy. [14] Although the understanding of these concepts in Han times was Taoist in nature, the theories proposed were similar to the Aristotelian theory of mineralogical exhalations (noted above). [14] By 122 BC, the Chinese had thus formulated the theory for metamorphosis of minerals, although it is noted by historians such as Dubs that the tradition of alchemical-mineralogical Chinese doctrine stems back to the School of Naturalists headed by the philosopher Zou Yan (305 BC–240 BC). [15] Within the broad categories of rocks and stones (shi) and metals and alloys (jin), by Han times the Chinese had hundreds (if not thousands) of listed types of stones and minerals, along with theories for how they were formed. [15] [16]

In the 5th century AD, Prince Qian Ping Wang of the Liu Song Dynasty wrote in the encyclopedia Tai-ping Yu Lan (circa 444 AD, from the lost book Dian Shu, or Management of all Techniques):

The most precious things in the world are stored in the innermost regions of all. For example, there is orpiment. After a thousand years it changes into realgar. After another thousand years the realgar becomes transformed into yellow gold. [17]

In ancient and medieval China, mineralogy became firmly tied to empirical observations in pharmaceutics and medicine. For example, the famous horologist and mechanical engineer Su Song (1020–1101 AD) of the Song Dynasty (960–1279 AD) wrote of mineralogy and pharmacology in his Ben Cao Tu Jing of 1070. In it he created a systematic approach to listing various different minerals and their use in medicinal concoctions, such as all the variously known forms of mica that could be used to cure various ills through digestion. [18] Su Song also wrote of the subconchoidal fracture of native cinnabar, signs of ore beds, and provided description on crystal form. [10] Similar to the ore channels formed by circulation of ground water mentioned above with the German scientist Agricola, Su Song made similar statements concerning copper carbonate, as did the earlier Ri Hua Ben Cao of 970 AD with copper sulfate. [10]

The Yuan Dynasty scientist Zhang Si-xiao (died 1332 AD) provided a groundbreaking treatise on the conception of ore beds from the circulation of ground waters and rock fissures, two centuries before Georgius Agricola would come to similar conclusions. [19] In his Suo-Nan Wen Ji, he applies this theory in describing the deposition of minerals by evaporation of (or precipitation from) ground waters in ore channels. [16]

In addition to alchemical theory posed above, later Chinese writers such as the Ming Dynasty physician Li Shizhen (1518–1593 AD) wrote of mineralogy in similar terms of Aristotle's metaphysical theory, as the latter wrote in his pharmaceutical treatise Běncǎo Gāngmù (本草綱目, Compendium of Materia Medica , 1596). [1] Another figure from the Ming era, the famous geographer Xu Xiake (1587–1641) wrote of mineral beds and mica schists in his treatise. [20] However, while European literature on mineralogy became wide and varied, the writers of the Ming and Qing dynasties wrote little of the subject (even compared to Chinese of the earlier Song era). The only other works from these two eras worth mentioning were the Shi Pin (Hierarchy of Stones) of Yu Jun in 1617, the Guai Shi Lu (Strange Rocks) of Song Luo in 1665, and the Guan Shi Lu (On Looking at Stones) in 1668. [20] However, one figure from the Song era that is worth mentioning above all is Shen Kuo.

Theories of Shen Kuo

Shen Kuo (Chen Gua ) (1031-1095)) Shen Kua.JPG
Shen Kuo (沈括) (1031-1095))

The medieval Chinese Song Dynasty statesman and scientist Shen Kuo (1031-1095 AD) wrote of his land formation theory involving concepts of mineralogy. In his Meng Xi Bi Tan (梦溪笔谈; Dream Pool Essays , 1088), Shen formulated a hypothesis for the process of land formation (geomorphology); based on his observation of marine fossil shells in a geological stratum in the Taihang Mountains hundreds of miles from the Pacific Ocean. [21] He inferred that the land was formed by erosion of the mountains and by deposition of silt, and described soil erosion, sedimentation and uplift. [22] In an earlier work of his (circa 1080), he wrote of a curious fossil of a sea-orientated creature found far inland. [23] It is also of interest to note that the contemporary author of the Xi Chi Cong Yu attributed the idea of particular places under the sea where serpents and crabs were petrified to one Wang Jinchen. With Shen Kuo's writing of the discovery of fossils, he formulated a hypothesis for the shifting of geographical climates throughout time. [24] This was due to hundreds of petrified bamboos found underground in the dry climate of northern China, once an enormous landslide upon the bank of a river revealed them. [24] Shen theorized that in pre-historic times, the climate of Yanzhou must have been very rainy and humid like southern China, where bamboos are suitable to grow. [24]

In a similar way, the historian Joseph Needham likened Shen's account with the Scottish scientist Roderick Murchison (1792–1871), who was inspired to become a geologist after observing a providential landslide. In addition, Shen's description of sedimentary deposition predated that of James Hutton, who wrote his groundbreaking work in 1802 (considered the foundation of modern geology). [12] The influential philosopher Zhu Xi (1130–1200) wrote of this curious natural phenomena of fossils as well, and was known to have read the works of Shen Kuo. [25] In comparison, the first mentioning of fossils found in the West was made nearly two centuries later with Louis IX of France in 1253 AD, who discovered fossils of marine animals (as recorded in Joinville's records of 1309 AD). [26]

America

Perhaps the most influential mineralogy text in the 19th and 20th centuries was the Manual of Mineralogy by James Dwight Dana, Yale professor, first published in 1848. The fourth edition was entitled Manual of Mineralogy and Lithology (ed. 4, 1887). It became a standard college text, and has been continuously revised and updated by a succession of editors including W. E. Ford (13th-14th eds., 1912–1929), Cornelius S. Hurlbut (15th-21st eds., 1941–1999), and beginning with the 22nd by Cornelis Klein. The 23rd edition is now in print under the title Manual of Mineral Science (Manual of Mineralogy) (2007), revised by Cornelis Klein and Barbara Dutrow.

Equally influential was Dana's System of Mineralogy, first published in 1837, which has consistently been updated and revised. The 6th edition (1892) [27] being edited by his son Edward Salisbury Dana. A 7th edition was published in 1944, and the 8th edition was published in 1997 under the title Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, edited by R. V. Gaines et al.

See also

Notes

  1. 1 2 3 4 5 Needham, Volume 3, 637.
  2. 1 2 Needham, Volume 3, 636.
  3. 1 2 Bandy, i (Forward).
  4. 1 2 Needham, Volume 3, 636-637.
  5. 1 2 3 Needham, Volume 3, 656.
  6. Ramsdell, 164.
  7. 1 2 Needham, Volume 3, 646.
  8. Kraus, Paul (1942–1943). Jâbir ibn Hayyân: Contribution à l'histoire des idées scientifiques dans l'Islam. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque. Cairo: Institut Français d'Archéologie Orientale. ISBN   9783487091150. OCLC   468740510. vol. II, p. 1, note 1; Weisser, Ursula (1980). Spies, Otto (ed.). Das "Buch über das Geheimnis der Schöpfung" von Pseudo-Apollonios von Tyana. Berlin: De Gruyter. doi:10.1515/9783110866933. ISBN   978-3-11-007333-1. p. 199. On the dating and historical background of the Sirr al-khalīqa, see Kraus 1942−1943, vol. II, pp. 270–303; Weisser 1980, pp. 39–72. On the dating of the writings attributed to Jābir, see Kraus 1942−1943, vol. I, pp. xvii–lxv.
  9. Norris, John (2006). "The Mineral Exhalation Theory of Metallogenesis in Pre-Modern Mineral Science". Ambix. 53 (1): 43–65. doi:10.1179/174582306X93183. S2CID   97109455.
  10. 1 2 3 Needham, Volume 3, 649.
  11. Needham, Volume 3, 678.
  12. 1 2 Needham, Volume 3, 604
  13. Needham, Volume 3, 643.
  14. 1 2 Needham, Volume 3, 640.
  15. 1 2 Needham, Volume 3, 641.
  16. 1 2 Needham, Volume 3, 651.
  17. Needham, Volume 3, 638.
  18. Needham, Volume 3, 648.
  19. Needham, Volume 3, 650.
  20. 1 2 Needham, Volume 3, 645.
  21. Sivin, III, 23.
  22. Sivin, III, 23-24.
  23. Needham, Volume 3, 618.
  24. 1 2 3 Needham, Volume 3, 614.
  25. Chan, 15.
  26. Chan, 14.
  27. Edward Salisbury Dana (1911). The system of mineralogy of James Dwight Dana (2 ed.). New York: J. Wiley & Sons. Retrieved 2009-07-06.

Related Research Articles

<span class="mw-page-title-main">Georgius Agricola</span> German scholar, mineralogist and metallurgist (1494–1555)

Georgius Agricola was a German Humanist scholar, mineralogist and metallurgist. Born in the small town of Glauchau, in the Electorate of Saxony of the Holy Roman Empire, he was broadly educated, but took a particular interest in the mining and refining of metals. He was the first to drop the Arabic definite article al-, exclusively writing chymia and chymista in describing activity that we today would characterize as chemical or alchemical, giving chemistry its modern name. For his groundbreaking work De Natura Fossilium published in 1546, he is generally referred to as the Father of Mineralogy and the founder of geology as a scientific discipline.

<span class="mw-page-title-main">Zhang Heng</span> Chinese scientist and statesman (78–139)

Zhang Heng, formerly romanized as Chang Heng, was a Chinese polymathic scientist and statesman who lived during the Han dynasty. Educated in the capital cities of Luoyang and Chang'an, he achieved success as an astronomer, mathematician, seismologist, hydraulic engineer, inventor, geographer, cartographer, ethnographer, artist, poet, philosopher, politician, and literary scholar.

<span class="mw-page-title-main">Cinnabar</span> Red mercury(II) sulfide mineral, HgS

Cinnabar, or cinnabarite, is the bright scarlet to brick-red form of mercury(II) sulfide (HgS). It is the most common source ore for refining elemental mercury and is the historic source for the brilliant red or scarlet pigment termed vermilion and associated red mercury pigments.

<span class="mw-page-title-main">Wheelbarrow</span> Small hand-propelled vehicle

A wheelbarrow is a small hand-propelled load-bearing vehicle, usually with just one wheel, designed to be pushed and guided by a single person using two handles at the rear. The term "wheelbarrow" is made of two words: "wheel" and "barrow." "Barrow" is a derivation of the Old English "barew" which was a device used for carrying loads.

<span class="mw-page-title-main">Shen Kuo</span> Chinese scientist and statesman

Shen Kuo or Shen Gua, courtesy name Cunzhong (存中) and pseudonym MengqiWeng (夢溪翁), was a Chinese polymath, scientist, and statesman of the Song dynasty (960–1279). Shen was a master in many fields of study including mathematics, optics, and horology. In his career as a civil servant, he became a finance minister, governmental state inspector, head official for the Bureau of Astronomy in the Song court, Assistant Minister of Imperial Hospitality, and also served as an academic chancellor. At court his political allegiance was to the Reformist faction known as the New Policies Group, headed by Chancellor Wang Anshi (1021–1085).

<span class="mw-page-title-main">Chinese astronomy</span> Aspect of science history

Astronomy in China has a long history stretching from the Shang dynasty, being refined over a period of more than 3,000 years. The ancient Chinese people have identified stars from 1300 BCE, as Chinese star names later categorized in the twenty-eight mansions have been found on oracle bones unearthed at Anyang, dating back to the mid-Shang dynasty. The core of the "mansion" system also took shape around this period, by the time of King Wu Ding.

<span class="mw-page-title-main">Trip hammer</span> Type of blacksmithing tool

A trip hammer, also known as a tilt hammer or helve hammer, is a massive powered hammer. Traditional uses of trip hammers include pounding, decorticating and polishing of grain in agriculture. In mining, trip hammers were used for crushing metal ores into small pieces, although a stamp mill was more usual for this. In finery forges they were used for drawing out blooms made from wrought iron into more workable bar iron. They were also used for fabricating various articles of wrought iron, latten, steel and other metals.

Science in the ancient world encompasses the earliest history of science from the protoscience of prehistory and ancient history through to late antiquity. In ancient times, culture and knowledge were passed on generation to generation by means of oral tradition. The development of writing further enabled the ability to preserve knowledge and culture, allowing communication to travel across generations with greater fidelity. The earliest scientific traditions of the ancient world developed in the Ancient Near East with Ancient Egypt and Babylonia in Mesopotamia. Later traditions of science during classical antiquity were advanced in Ancient Persia, Ancient Greece, Ancient Rome, Ancient India, Ancient China, and ancient Pre-Columbian Mesoamerica. Aside from alchemy and astrology that waned in importance during the Age of Enlightenment, civilizations of the ancient world laid the roots of various modern sciences. These include astronomy, calendrical science, mathematics, horology and timekeeping, cartography, botany and zoology, medicine and pharmacology, hydraulic and structural engineering, metallurgy, archaeology, and many other fields.

<span class="mw-page-title-main">Science in classical antiquity</span>

Science in classical antiquity encompasses inquiries into the workings of the world or universe aimed at both practical goals as well as more abstract investigations belonging to natural philosophy. Classical antiquity is traditionally defined as the period between the 8th century BC and the 6th century AD. It is typically limited geographically to the Greco-Roman West, Mediterranean basin, and Ancient Near East, thus excluding traditions of science in the ancient world in regions such as China and the Indian subcontinent.

The history of geography includes many histories of geography which have differed over time and between different cultural and political groups. In more recent developments, geography has become a distinct academic discipline. 'Geography' derives from the Greek γεωγραφία – geographia, literally "Earth-writing", that is, description or writing about the Earth. The first person to use the word geography was Eratosthenes. However, there is evidence for recognizable practices of geography, such as cartography, prior to the use of the term.

<span class="mw-page-title-main">Su Song</span> Polymath (1020–1101)

Su Song, courtesy name Zirong, was a Chinese polymathic scientist and statesman. Excelling in a variety of fields, he was accomplished in mathematics, astronomy, cartography, geography, horology, pharmacology, mineralogy, metallurgy, zoology, botany, mechanical engineering, hydraulic engineering, civil engineering, invention, art, poetry, philosophy, antiquities, and statesmanship during the Song dynasty (960–1279).

<span class="mw-page-title-main">Stamp mill</span> Type of mill machine

A stamp mill is a type of mill machine that crushes material by pounding rather than grinding, either for further processing or for extraction of metallic ores. Breaking material down is a type of unit operation.

<span class="mw-page-title-main">History of science and technology in China</span>

Ancient Chinese scientists and engineers made significant scientific innovations, findings and technological advances across various scientific disciplines including the natural sciences, engineering, medicine, military technology, mathematics, geology and astronomy.

<span class="mw-page-title-main">Jiao Yu</span> Chinese military general, philosopher, and writer of the Yuan and Ming dynasties

Jiao Yu was a Chinese military general, philosopher, and writer of the Yuan dynasty and early Ming dynasty under Zhu Yuanzhang, who founded the dynasty and became known as the Hongwu Emperor. He was entrusted by Zhu as a leading artillery officer for the rebel army that overthrew the Mongol Yuan dynasty, and established the Ming dynasty.

Zhu Yu was a Chinese maritime historian during the Song dynasty. He retired in Huang Gang (黄岗) of the Hubei province, bought a country house and named it "Pingzhou". He called himself "Expert Vegetable Grower of Pingzhou (萍洲老圃)". Between 1111 and 1117 AD, Zhu Yu wrote the book Pingzhou Ketan, published in 1119 AD. It covered a wide variety of maritime subjects and issues in China at the time. His extensive knowledge of maritime engagements, technologies, and practices were because his father, Zhu Fu, was the Port Superintendent of Merchant Shipping for Guangzhou from 1094 until 1099 AD, whereupon he was elevated to the status of governor there and served in that office until 1102 AD.

Chinese exploration includes exploratory Chinese travels abroad, on land and by sea, from the travels of Han dynasty diplomat Zhang Qian into Central Asia during the 2nd century BC until the Ming dynasty treasure voyages of the 15th century that crossed the Indian Ocean and reached as far as East Africa.

Georgius Agricola is considered the 'father of mineralogy'. Nicolas Steno founded the stratigraphy, the geology characterizes the rocks in each layer and the mineralogy characterizes the minerals in each rock. The chemical elements were discovered in identified minerals and with the help of the identified elements the mineral crystal structure could be described. One milestone was the discovery of the geometrical law of crystallization by René Just Haüy, a further development of the work by Nicolas Steno and Jean-Baptiste L. Romé de l'Isle. Important contributions came from some Saxon "Bergraths"/ Freiberg Mining Academy: Johann F. Henckel, Abraham Gottlob Werner and his students. Other milestones were the notion that metals are elements too and the periodic table of the elements by Dmitri Ivanovich Mendeleev. The overview of the organic bonds by Kekulé was necessary to understand the silicates, first refinements described by Bragg and Machatschki; and it was only possibly to understand a crystal structure with Dalton's atomic theory, the notion of atomic orbital and Goldschmidt's explanations. Specific gravity, streak and X-ray powder diffraction are quite specific for a Nickel-Strunz identifier. Nowadays, non-destructive electron microprobe analysis is used to get the empirical formula of a mineral. Finally, the International Zeolite Association (IZA) took care of the zeolite frameworks.

Yu Xi, courtesy name Zhongning (仲寧), was a Chinese astronomer and writer of the Jin dynasty. He is best known for his discovery of the precession of the equinoxes, independently of the earlier ancient Greek astronomer Hipparchus. He also postulated that the Earth could be spherical in shape instead of being flat and square, long before the idea became widely accepted in Chinese science with the advances in circumnavigation by Europeans from the 16th-20th centuries, especially with their arrival into the capital's imperial court in the 17th century.

References