History of passive solar building design

Last updated

The passive solar design of buildings includes consideration of their orientation to the sun and their thermal mass, factors which have been incorporated to a greater or lesser extent in vernacular architecture for thousands of years. Ancient Greeks, Romans, and Chinese were the first to refine and develop the basic principles of passive solar design, but European technological advances were largely abandoned after the Fall of Rome. It was not until the 20th century that interest in the principles of passive solar design had a resurgence in Europe and the U.S.A., with architects such as George F. Keck and Frank Lloyd Wright. In the 21st century, worldwide endeavours to reduce power consumption have kept the interest in passive solar technology alive.

Contents

Pre-modern history

The techniques of passive solar building design were practiced for thousands of years, by necessity, before the advent of mechanical heating and cooling. It has remained a traditional part of vernacular architecture in many countries. [1] There is evidence that ancient cultures considered factors such as solar orientation, thermal mass and ventilation in the construction of residential dwellings. Fully developed solar architecture and urban planning methods were first employed by the Greeks and Chinese who oriented their buildings toward the south to provide light and warmth. [2] Nearly two and a half millennia ago, the ancient Greek philosopher Aeschylus wrote: "Only primitives & barbarians lack knowledge of houses turned to face the Winter sun." [2] Similarly, Socrates said: "Now, supposing a house to have a southern aspect, sunshine during winter will steal in under the verandah, but in summer, when the sun traverses a path right over our heads, the roof will afford an agreeable shade, will it not?" [3] Roman bathhouses had large south facing windows. [4] Solar design was largely abandoned in Europe after the Fall of Rome but continued unabated in China where cosmological traditions associate the south with summer, warmth and health. [2]

Modern history

MIT's 1939 Solar House #1 MIT Solar House One.png
MIT's 1939 Solar House #1

Although earlier experimental solar houses were constructed using a mixture of active and passive solar techniques, some of the first European engineered passive solar houses of the modern era were built in Germany after World War I, when the Allies occupied the Ruhr area, including most of Germany's coal mines. [5]

Architect George F. Keck was a pioneering designer of passive solar houses in the 1930s and 40s. [6] He designed the all-glass "House of Tomorrow" for the 1933 Century of Progress Exposition in Chicago [7] and noted that it was warm inside on sunny winter days prior to the installation of the furnace. Following this he gradually started incorporating more south-facing windows into his designs for other clients, and in 1940 designed a passive solar home for real estate developer Howard Sloan in Glenview, Illinois. The Sloan House was called a "solar house" by the Chicago Tribune, the first modern use of that term. Sloan then built a number of passive solar houses, and his publicity efforts contributed to a significant "solar house" movement in the 1940s. [8]

Frank Lloyd Wright used passive solar principles in some of his designs, most notably in the Jacobs House, built in 1944 in Wisconsin, which was also known as the "Solar Hemicycle" or "Solar Hemicyclo." [8] Others continued to experiment with passive solar techniques. In 1958, Wendell Thomas, a professor with no architectural training, built "Sunnycave" in Celo Community in the mountains of North Carolina. His "moderately solar" house was south facing and earth-bermed on the North and West sides. He complemented the basic solar design by building a slot between the floor and wall on all four sides that drained cold air from the walls down to a deep, completely dry, sealed crawl space where the air warmed to earth temperature. The cold air drainage slot acted like a return register of a hot air furnace system, but he eliminated the registers and the clumsy conduits leading to the furnace by having the whole house circulate air like a passive furnace, fueled with a small woodstove in its center. [9]

In the United States, interest in passive solar building design was significantly stimulated by the 1973 oil crisis. [10] Dozens of pattern books were published in this period, including the Passive Solar Energy Book by Edward Mazria. [11] In 1977, the U.S. Department of Energy was created, and in 1978 Solar Energy Tax credits were provided. In 1979, President Carter installed solar panels on the roof of the White House.

Contemporary developments

Passive solar technologies were incrementally refined and greatly improved during the 20th century, boosted by the motivation of (and aided by) the development of 3D computer modelling techniques.

At the start of the 21st century, passive solar building design has received greater interest. U.S. Solar Energy Tax Credits were reinstated in 2005, [12] and the 2007 Energy Bill provided more funding for solar energy research and solar air conditioning.

The U.S. Department of Energy's 2007 "Thermal Performance of the Exterior Envelopes of Whole Buildings International Conference" presented a comprehensive workshop on "Three Decades of Passive Solar Heating and Cooling Lessons Learned" [13]

Since 1978, roughly 300,000 U.S. buildings have demonstrated at least some passive solar design features (although over 25 million U.S. buildings have been constructed since then without using these techniques).[ citation needed ] For three decades (since the 1978 U.S. Solar Energy Tax Credits), a 70%–90% energy consumption reduction has been demonstrated in experimental passive solar and near zero energy buildings."Side By Side Comparison"

In recent years, the U.S. Department of Energy's Solar Decathlon has showcased some advanced creative designs, using both passive and active solar systems, by architecture and engineering student teams from around the world. Solar Decathlon website

See also

Related Research Articles

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun that is harnessed using a range of technologies

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

A Trombe wall is a massive equator-facing wall that is painted a dark color in order to absorb thermal energy from incident sunlight and covered with a glass on the outside with an insulating air-gap between the wall and the glaze. A Trombe wall is a passive solar building design strategy that adopts the concept of indirect-gain, where sunlight first strikes a solar energy collection surface which covers thermal mass located between the Sun and the space. The sunlight absorbed by the mass is converted to thermal energy (heat) and then transferred into the living space.

<span class="mw-page-title-main">Passive solar building design</span> Architectural engineering that uses the Suns heat without electric or mechanical systems

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

<span class="mw-page-title-main">Earth shelter</span> House partially or entirely surrounded by earth

An earth shelter, also called an earth house, earth bermed house, or underground house, is a structure with earth (soil) against the walls, on the roof, or that is entirely buried underground.

A solar chimney – often referred to as a thermal chimney – is a way of improving the natural ventilation of buildings by using convection of air heated by passive solar energy. A simple description of a solar chimney is that of a vertical shaft utilizing solar energy to enhance the natural stack ventilation through a building.

<span class="mw-page-title-main">Low-energy house</span> House designed for reduced energy use

A low-energy house is characterized by an energy-efficient design and technical features which enable it to provide high living standards and comfort with low energy consumption and carbon emissions. Traditional heating and active cooling systems are absent, or their use is secondary. Low-energy buildings may be viewed as examples of sustainable architecture. Low-energy houses often have active and passive solar building design and components, which reduce the house's energy consumption and minimally impact the resident's lifestyle. Throughout the world, companies and non-profit organizations provide guidelines and issue certifications to guarantee the energy performance of buildings and their processes and materials. Certifications include passive house, BBC - Bâtiment Basse Consommation - Effinergie (France), zero-carbon house (UK), and Minergie (Switzerland).

<span class="mw-page-title-main">Passive house</span> Type of house

"Passive house" is a voluntary standard for energy efficiency in a building, which reduces the building's ecological footprint. It results in ultra-low energy buildings that require little energy for space heating or cooling. A similar standard, MINERGIE-P, is used in Switzerland. The standard is not confined to residential properties; several office buildings, schools, kindergartens and a supermarket have also been constructed to the standard. The design is not an attachment or supplement to architectural design, but a design process that integrates with architectural design. Although it is generally applied to new buildings, it has also been used for refurbishments.

This is a list of solar energy topics.

<span class="mw-page-title-main">Superinsulation</span> Method of insulating a building

Superinsulation is an approach to building design, construction, and retrofitting that dramatically reduces heat loss by using much higher levels of insulation and airtightness than normal. Superinsulation is one of the ancestors of the passive house approach.

<span class="mw-page-title-main">Zero-energy building</span> Energy efficiency standard for buildings

A Zero Energy Building (ZEB), also known as a Net Zero Energy (NZE) building, is a building with net zero energy consumption, meaning the total amount of energy used by the building on an annual basis is equal to the amount of renewable energy created on the site or in other definitions by renewable energy sources offsite, using technology such as heat pumps, high efficiency windows and insulation, and solar panels.

Renewable heat is an application of renewable energy referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented.

<span class="mw-page-title-main">Ground-coupled heat exchanger</span>

A ground-coupled heat exchanger is an underground heat exchanger that can capture heat from and/or dissipate heat to the ground. They use the Earth's near constant subterranean temperature to warm or cool air or other fluids for residential, agricultural or industrial uses. If building air is blown through the heat exchanger for heat recovery ventilation, they are called earth tubes.

Seasonal thermal energy storage (STES), also known as inter-seasonal thermal energy storage, is the storage of heat or cold for periods of up to several months. The thermal energy can be collected whenever it is available and be used whenever needed, such as in the opposing season. For example, heat from solar collectors or waste heat from air conditioning equipment can be gathered in hot months for space heating use when needed, including during winter months. Waste heat from industrial process can similarly be stored and be used much later or the natural cold of winter air can be stored for summertime air conditioning.

<span class="mw-page-title-main">Passive cooling</span> Building design that reduces inside temperatures without air conditioning

Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption. This approach works either by preventing heat from entering the interior or by removing heat from the building.

Edward Mazria is an American architect, author and educator. He is a graduate of Lafayette High School, played basketball in high school and in college at Pratt Institute in Brooklyn, New York, and was drafted by the New York Knickerbockers in 1962. After receiving his Bachelor of Architecture Degree from the Pratt Institute in 1963 he spent two years as an architect in the Peace Corps in Arequipa, Peru. He later worked with the firm of Edward Larrabee Barnes in New York before completing his master's degree and beginning a teaching and research career at the University of New Mexico in 1973.

A double envelope house is a passive solar house design which collects solar energy in a solarium and passively allows the warm air to circulate around the house between two sets of walls, a double building envelope. This design is from 1975 by Lee Porter Butler in the United States.

<span class="mw-page-title-main">Solar architecture</span>

Solar architecture is an architectural approach that takes in account the Sun to harness clean and renewable solar power. It is related to the fields of optics, thermics, electronics and materials science. Both active and passive solar housing skills are involved in solar architecture.

<span class="mw-page-title-main">Solar air heat</span> Solar thermal technology

Solar air heating is a solar thermal technology in which the energy from the sun, insolation, is captured by an absorbing medium and used to heat air. Solar air heating is a renewable energy heating technology used to heat or condition air for buildings or process heat applications. It is typically the most cost-effective out of all the solar technologies, especially in commercial and industrial applications, and it addresses the largest usage of building energy in heating climates, which is space heating and industrial process heating.

References

  1. Crosbie, Michael J. (2008-04-04). "Sustainability by 'Amateurs'". AIA Architect. Retrieved 2008-05-07.
  2. 1 2 3 Butti, Ken; John Perlin (1980). A Golden Thread: 2500 Years of Solar Architecture. Palo Alto, CA: Cheshire Books. ISBN   0-917352-07-6.
  3. Xenophon (1979). The Memorabilia (Book III, VIII ed.). New Rochelle, N.Y.: Caratzas Bros. ISBN   0-89241-000-0.
  4. "The History of Solar" (PDF). United States Department of Energy. Retrieved 2007-09-29.
  5. Perlin, John (2013). Let it shine. The 6,000 year story of solar energy. Novato, California: New World Library. pp. 240–241. ISBN   9781608681327.
  6. Boyce, Robert (1993). Keck & Keck: The Poetics of Comfort. Princeton, NJ: Princeton Architectural Press. ISBN   1-878271-17-2.
  7. Collins, Judith; Nash, Al (2002). "Preserving Yesterday's View of Tomorrow: The Chicago World's Fair Houses" (PDF). Cultural Resource Management. 25 (5): 27–31. Archived from the original (PDF) on 2010-05-27.
  8. 1 2 Denzer, Anthony (2013). The Solar House: Pioneering Sustainable Design. Rizzoli. ISBN   978-0847840052. Archived from the original on 2013-07-26.
  9. Thomas, Wendell (July 1, 1971). "Creating an Eco-Friendly, Passive Solar, Earth-Sheltered Home". Mother Earth News.
  10. Borasi, Giovanna; Mirko Zardini, eds. (2008). Sorry, Out of Gas: Architecture's Response to the 1973 Oil Crisis. Edizioni Corraini/Canadian Centre for Architecture. ISBN   978-88-7570-143-7.
  11. Mazria, Edward (1979). The Passive Solar Energy Book . Emmaus, PA: Rodale Press. ISBN   0-87857-237-6.
  12. Department of Energy – Tax Breaks
  13. "Three Decades Of Passive Solar Heating and Cooling Lessons Learned". U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Buildings Technology - "Thermal Performance of the Exterior Envelopes of Whole Buildings Tenth International Conference". Archived from the original on 2008-01-25. Retrieved 2008-01-18.