Hordeum brachyantherum

Last updated

Hordeum brachyantherum
Hordeum brachyantherum.jpg
Scientific classification Red Pencil Icon.png
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Pooideae
Genus: Hordeum
Species:
H. brachyantherum
Binomial name
Hordeum brachyantherum
Nevski

Hordeum brachyantherum, known by the common name meadow barley, is a species of barley. It is native to western North America from Alaska to northern Mexico, coastal areas of easternmost Russia (Kamchatka), and a small area of coastal Newfoundland.

Contents

The diploid cytotype occurs only in California, throughout the state, while everywhere else plants are tetraploid.

This is a tufting perennial bunchgrass approaching a meter in maximum height. It produces compact, narrow inflorescences 8 to 10 centimeters long and purplish in color. Like other barleys the spikelets come in triplets. It has two small, often sterile lateral spikelets on pedicels and a larger, fertile central spikelet lacking a pedicel.

General information

Hordeum brachyantherum belongs to grass family, Poaceae, genus Hordeum . There are two common cytotypes of Hordeum brachyantherum. The diploid mainly grow in California, the tetraploid grow widely over the world. Polyploidy is very common in plants. Polyploidization plays an important role in plant evolution, it is commonly used in agriculture to develop novel phenotypes. [1] Polyploidization also occurs naturally in plant populations. In 1980, a rare hexaploid form of Hordeum brachyantherum was discovered in California within the populations of diploid and tetraploid Hordeum brachyantherum. It was hypothesized that this hexaploid form was evolved by outcrossing between diploid Hordeum marine and tetraploid Hordeum brachyantherum ssp. brachyantherum and followed by duplication of chromosome. [2] Polyploidization may lead to speciation because the reproductive isolation may develop between hexaploid and either tetraploid or diploid due to the mistake of alignment during meiosis.

Homology

Hordeum contains a gene called hordoindoline that involves grain hardness and antimicrobial activity. Since wheat contains a homologous gene named puroindoline, it was concluded that Hordeum and wheat shared a common ancestor during the evolutionary process. The novel variants of hordoindoline genes were found in Hordeum brachyantherum. It was hypothesized that the novel genes arose due to the gene duplication during the early stage of the divergence of the genus Hordeum. Some of the non-synonymous mutations are beneficial and show an overall improved antifungal activity. [3] These non-synonymous mutations provide the material for evolution because natural selection can select for organisms who possess these mutations and alter the allele frequency over time.

Salinity

Natural selection can also act on salinity tolerance for many plants. High salinity may negatively impact germination success, plant growth, and survival. Thus, under evolutionary process including natural selection, some plants developed morphological and physiological adaptations to live in high salinity conditions. The effect of salinity on germination rate shows both inter-specific and intra-specific variation. Compared to other perennial plants such as Agrostis stolonifera , Hordeum brachyantherum is more tolerated under high salinity. The seedling lengths and root or shoot lengths show different responses to high salinity. The seedling lengths of Hordeum brachyantherum are more negatively affected by high salinity. [4] The intra-specific variation in the ability to tolerate elevated salinity among populations of Hordeum brachyantherum may result from the genetic variation which underlines the basis of evolution of Hordeum brachyantherum.

Ecology

One major function of perennial plants is to restore the land and ecosystem. Hordeum brachyantherum is used to restore the native perennial grasslands in California and to reduce the density of non-native annual plants. The perennial plants can rapidly recover the soil microbial biomass in the grasslands due to the carbon supply maintained by the perennial plants. The species diversity and composition is not affected by the restoration, however, the relative proportion of the native plant biomass increased in the restored perennial grassland. [5]

Related Research Articles

Polyploidy the condition of having more than two paired sets of chromosomes

Polyploidy is a condition in which the cells of an organism have more than two paired (homologous) sets of chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two sets of chromosomes—one set inherited from each parent. However, some organisms are polyploid, and polyploidy is especially common in plants. Most eukaryotes have diploid somatic cells, but produce haploid gametes by meiosis. A monoploid has only one set of chromosomes, and the term is usually only applied to cells or organisms that are normally haploid. Males of bees and other Hymenoptera, for example, are monoploid. Unlike animals, plants and multicellular algae have life cycles with two alternating multicellular generations. The gametophyte generation is haploid, and produces gametes by mitosis, the sporophyte generation is diploid and produces spores by meiosis.

<i>Hordeum</i> Genus of grasses

Hordeum is a genus of annual and perennial plants in the grass family. They are native throughout the temperate regions of Africa, Eurasia, and the Americas.

<i>Bromus tectorum</i> Species of grass

Bromus tectorum, known as downy brome, drooping brome or cheatgrass, is a winter annual grass native to Europe, southwestern Asia, and northern Africa, but has become invasive in many other areas. It now is present in most of Europe, southern Russia, Japan, South Africa, Australia, New Zealand, Iceland, Greenland, North America and western Central Asia. In the eastern US B. tectorum is common along roadsides and as a crop weed, but usually does not dominate an ecosystem. It has become a dominant species in the Intermountain West and parts of Canada, and displays especially invasive behavior in the sagebrush steppe ecosystems where it has been listed as noxious weed. B. tectorum often enters the site in an area that has been disturbed, and then quickly expands into the surrounding area through its rapid growth and prolific seed production.

<i>Campanula rotundifolia</i> Species of flowering plant in the bellflower family Campanulaceae

Campanula rotundifolia, the harebell, Scottish bluebell, or bluebell of Scotland, is a species of flowering plant in the bellflower family Campanulaceae. This herbaceous perennial occurs in Europe from the north Mediterranean to the arctic. In Scotland, it is often known simply as bluebell. It produces its violet-blue, bell-shaped flowers in late summer and autumn.

Foxtail (diaspore)

A foxtail is a spikelet or cluster of a grass, that serves to disperse its seeds as a unit. Thus, the foxtail is a type of diaspore or plant dispersal unit. Some grasses that produce a foxtail are themselves called "foxtail", also "spear grass". They can become a health hazard for dogs and other domestic animals, and a nuisance for people.

Taxonomy of wheat

During 10,000 years of cultivation, numerous forms of wheat, many of them hybrids, have developed under a combination of artificial and natural selection. This diversity has led to much confusion in the naming of wheats. This article explains how genetic and morphological characteristics of wheat influence its classification, and gives the most common botanical names of wheat in current use. Information on the cultivation and uses of wheat is at the main wheat page.

Triticeae Tribe of grasses

Triticeae is a botanical tribe within the subfamily Pooideae of grasses that includes genera with many domesticated species. Major crop genera found in this tribe include wheat, barley, and rye; crops in other genera include some for human consumption, and others used for animal feed or rangeland protection. Among the world's cultivated species, this tribe has some of the most complex genetic histories. An example is bread wheat, which contains the genomes of three species with only one being a wheat Triticum species. Seed storage proteins in the Triticeae are implicated in various food allergies and intolerances.

<i>Hordeum jubatum</i>

Hordeum jubatum, with common names foxtail barley, bobtail barley, squirreltail barley, and intermediate barley, is a perennial plant species in the grass family Poaceae. It occurs wild mainly in northern North America and adjacent northeastern Siberia. However, as it escaped often from gardens it can be found worldwide in areas with temperate to warm climates, and is considered a weed in many countries. The species is a polyploid and originated via hybridization of an East Asian Hordeum species with a close but extinct relative of Californian H. brachyantherum. It is grown as an ornamental plant for its attractive inflorescences and when done flowering for its infructescence.

<i>Agropyron cristatum</i> Species of grass

Agropyron cristatum, the crested wheat grass, crested wheatgrass, fairway crested wheat grass, is a species in the family Poaceae. This plant is often used as forage and erosion control. It is well known as a widespread introduced species on the prairies of the United States and Canada.

Agropyron desertorum is a plant species in the family Poaceae which was originally from Russian and Siberian steppes until it was introduced to the United States from there between 1907 and 1913. Prior to its introduction it was believed that Desert wheatgrass and crested wheatgrass are different species. Currently it can still be found in Central and Western United States, except for Idaho, Kansas, Louisiana, Minnesota, Oklahoma, and Washington.

<i>Puccinia coronata</i> Species of fungus

Puccinia coronata is a plant pathogen and causal agent of oat and barley crown rust. The pathogen occurs worldwide, infecting both wild and cultivated oats. Crown rust poses a threat to barley production, because the first infections in barley occur early in the season from local inoculum. Crown rusts have evolved many different physiological races within different species in response to host resistance. Each pathogenic race can attack a specific line of plants within the species typical host. For example, there are over 290 races of P. coronata. Crops with resistant phenotypes are often released, but within a few years virulent races have arisen and P. coronata can infect them.

<i>Hordeum murinum</i> Species of grass

Hordeum murinum, commonly known as wall barley or false barley, is a species of grass.

<i>Hordeum pusillum</i> Species of grass

Hordeum pusillum, the little barley, is an annual grass native to the United States. It arrived via multiple long-distance dispersals of a southern South American species of Hordeum about one million years ago. Its closest relatives are therefore not the other North American taxa like meadow barley or foxtail barley, but rather Hordeum species of the pampas of central Argentina and Uruguay. It is less closely related to the Old World domesticated barley, from which it diverged about 12 million years ago. It is diploid.

A doubled haploid (DH) is a genotype formed when haploid cells undergo chromosome doubling. Artificial production of doubled haploids is important in plant breeding.

<i>Elymus canadensis</i> Species of plant

Elymus canadensis, commonly known as Canada wild rye or Canadian wildrye, is a species of wild rye native to much of North America. It is most abundant in the central plains and Great Plains. It grows in a number of ecosystems, including woodlands, savannas, dunes, and prairies, sometimes in areas that have been disturbed.

<i>Panicum decompositum</i> Species of plant

Panicum decompositum, known by the common names native millet, native panic, Australian millet, papa grass, and umbrella grass, is a species of perennial grass native to the inland of Australia. It occurs in every mainland state. The seeds can be cultivated to produce flour typically used in Aboriginal bushfood. The species is also considered to have relatively high palatability by livestock, making it suitable for grazing pastures.

Hordeum intercedens is an diploid, annual species of wild barley known by the common names bobtail barley and vernal barley. It is native to southern California and northern Baja California, where it is an increasingly rare member of the flora in saline and alkaline soils near seasonal waterflows and vernal pool habitats. Today most occurrences are located on the Channel Islands of California; many of the occurrences known from the mainland have been extirpated in the process of land development. This is an annual grass growing erect to bent in small tufts with stems up to 40 centimeters long. The inflorescence is a green spike up to 6.5 centimeters long made up of awned spikelets between 1 and 2 centimeters long.

<i>Psathyrostachys juncea</i> Species of grass

Psathyrostachys juncea is a species of grass known by the common name Russian wildrye. It was formerly classified as Elymus junceus. It is native to Russia and China, and has been introduced to other parts of the world, such as Canada and the United States. Psathyrostachys juncea is a great source of food for grazing animals, as it has high nutrition value in its dense basal leaves, even in the late summer and autumn seasons. This species can grow and prosper in many harsh environments, making it an ideal candidate for improvement as it can grow in areas were farming is difficult. This species is a drought-resistant forage plant and can survive during the cool seasons. It is also a cross-pollinator and is self-sterile. This means that P. juncea cannot self-fertilize; it must find another plant of the same species with which to exchange gametes. Self-sterilization increases the genetic diversity of a species.

<i>Dichanthium annulatum</i> Species of plant

Dichanthium annulatum is a species of grass. It is commonly used as a forage for livestock.

Diploidization is the process of converting a polyploid genome back into a diploid one. Polyploidy is a product of whole genome duplication (WGD) and is followed by diploidization as a result of genome shock. The plant kingdom has undergone multiple events of polyploidization followed by diploidization in both ancient and recent lineages. It has also been hypothesized that vertebrate genomes have gone through two rounds of paleopolyploidy. The mechanisms of diploidization are poorly understood but patterns of chromosomal loss and evolution of novel genes are observed in the process.

References

  1. Mason AS, and Batley J (2015) Creating new interspecific hybrid and polyploid crops. Trends In Biotechnology 33(8): 436-441
  2. Komatsuda T, Salomon B, Bothmer RV. (2009) Evolutionary process of Hordeum brachyantherum 6x and related tetraploid species revealed by nuclear DNA sequences. Breeding Science 59(5):611-616.
  3. Terasawa Y, Takata K, Anai T, Ikeda TM. (2013) Identification and distribution of Puroindoline b-2 variant gene homologs in Hordeum. Genetica 141(7-9): 359-368.
  4. Janousek CH, Folger CL. (2013) Inter-specific variation in salinity effects on germination in Pacific Northwest tidal wetland plants. Aquatic Botany 111: 104-111.
  5. Potthoff M, Jackson LE, Steenwerth KL, Ramirez I, Stromberg MR, Rolston DE. (2005) Soil Biological and chemical properties in restored perennial grassland in California. Restoration Ecology 13(1):61-73.