Hyalin

Last updated

Hyalin is a protein released from the cortical granules of a fertilized animal egg. The released hyalin modifies the extracellular matrix of the fertilized egg to block other sperm from binding to the egg, and is known as the slow-block to polyspermy. All animals have this slow-block mechanism.

Contents

Hyalin is a large, acidic protein which aids in embryonic development. The protein has strong adhesive properties which can help with cell differentiation and as a polyspermy prevention component. It forms the hyaline layer which covers the surface of the egg after insemination.

Structure

Its physical structure has a major and minor component. One is filamentous, having flexible molecules containing a globular domain head at the end. Its conformation is retained mainly by disulfide bonds, as virtually all cysteine amino acids are found in the disulfide form, but also hydrophobic forces and salt linkages stabilize the molecule. [1] The filament length is about 75 nm long, and the head being club-shaped with a diameter of 12 nm. An isoform of the molecule exists, having a longer filament of 125 nm instead. [2] Both forms of these filaments often fold on themselves, making the protein heterogeneous, resulting in poorly resolved stains on a gel. This makes the exact mass uncertain, as the protein is very difficult to purify. Estimates place the mass at about 350 kDa. About 2-3% of its mass is carbohydrates. Aggregates of hyalin also form by associating the heads of the protein, and hyalin remains accociated with a high, molecular weight core protein throughout purification. [2]

Hyalin mRNA is about 12kb in length. It encodes for approximately 25% acidic residues with only 3.5% basic residues. [1] Within its sequence is a region containing tandem repeats of about 84 amino acids. This sequence is highly conserved between species, and is believed to be the adhesive substrate of hyalin. A recombinant part of this sequence was created and its adhesive properties were tested. It was found to be about as adhesive as native hyalin. Antibodies bound to the recombinant hyalin and blocked its adhesion similar to normal hyalin. The tandem repeat region was then found to be on the filamentous part of hyalin when the antibodies bound to it. As many as 21 of these long repeats can be present, accounting for 230 kDa of the total mass and two-thirds of the filamentous region. These repeats shows no resemblance to anything within the genbank, making hyalin a unique protein. [3]

Embryonic development

Location in cell

Hyalin is located in the cortical granules within an egg. Here, the protein is in a solated form. [1] Cortical granules migrate to the inner plasma membrane where they remain inactive until the cell depolarizes. [4] All protein at this point is of a maternal origin. Hyalin is confined within a subregion of the cortical granules, showing that and these vesicles hold enough hyalin to support the cell and form the hyalin layer until the gastrulation stage. Another source of hyalin is in the cytoplasm. This is also maternally derived. A hyalin layer which coats the embryo forms even after hyalin has been removed from the cortical granules, showing that this secondary reservoir exists. [5] New hyalin is not expressed until after the gastrula has been formed. This is shown by the accumulation of hyalin mRNA. This mRNA is expressed around the blastopore at the endoderm-ectoderm boundary, which is rich in rough endoplasmic reticulum. New hyalin appeared on the apical surface of the ectoderm cells. [6] It also had to be specifically trafficked as it did in the cortical granules. Hyalin does not penetrate into the endoderm. Some monoclonal antibodies were identified to carry molecules to the apical surface of ectodermal cells. Maternal hyalin persists throughout development and appears in the archenteron of the gastrula. Since the same genomic DNA gene encodes for both maternal and new hyalin, some alternative splicing must occur in order for the antibodies to carry the correct hyalin to the correct area. [3]

Hyaline layer formation

Hyalin's structure is dependent upon calcium ions. It stabilizes against denaturation from the high concentrations of NaCl in seawater. Stabilization happens when concentrations are as low as 1mM. Calcium also causes hyalin to precipitate and form aggregates with itself and other proteins. Doing this would require higher concentrations of calcium. Another divalent ion, Mg2+, causes further precipitation of hyalin. When acting alone, magnesium cannot cause precipitation, but increases the effect of calcium precipitation. [7]

As stated before, the hyaline layer coats the external surface of an embryo. Once the egg is fertilized, then the cortical granules exocytose their contents into the extracellular matrix. When this happens, hyalin comes in contact with calcium ions and solubilizes. Binding with calcium also induces hyalin-protein interactions, creating aggregates of itself and other proteins. [7] A gel like layer results, and the hyaline layer is formed around the egg. The hyaline layer grows to be about 2–3 mm thick within fifteen minutes after insemination. [3] This layer forms in the extracellular matrix and functions as an adhesive substance for the blastomeres.

Function

The hyaline layer is responsible for the adhesion and proper orientation of the cells of an embryo. Throughout development, certain cells change their binding affinity towards hyalin. Hyalin helps cells differentiate into the animal and the vegetal halves during oogenesis by utilizing zinc and lithium ions. Zinc enhances the amount of hyalin precipitated, while lithium keeps the hyalin solubilized when around calcium. Zinc, then, causes an animalizing effect since the binding of the blastula cells would be stronger, while the weaker attachment of the cells would form the vegetal half. [8] Cells can further differentiate if they gain an affinity towards other membranes. Invagination of the blastula occurs when the endoderm loses its affinity towards hyalin, while the ectoderm retains it. [9] This leads to the keystone shape of the gastrula, with the different layers forming into separate biological systems.

Hyalin has a secondary effect of aiding with polyspermy when in the hyaline layer. The fertilization envelope is the hardened mechanical barrier that blocks additional sperm from penetrating the cell. It is created by the products secreted by the cortical granules. Underneath the fertilization envelope is the hyaline layer, which covers up sperm receptors in the egg's plasma membrane. Should the fertilization envelope not form or dissociate, the hyaline layer alone blocks against polyspermy. [10]

  1. 1 2 3 Stephens, R.E.; Kane, R.E. (1970). "Some Properties of Hyalin. The Calcium-Insoluble Protein of the Hyaline Layer of the Sea Urchin Egg". The Journal of Cell Biology. 44 (3): 611–617. doi:10.1083/jcb.44.3.611. PMC   2107978 . PMID   4190067.
  2. 1 2 Adelson, David L.; Alliegro, Mark C; McClay, David R. (1992). "On the Ultrastructure of Hyalin, A Cell Adhesion Protein of the Sea Urchin Embryo Extracellular Matrix". The Journal of Cell Biology. 116 (5): 1283–1289. doi:10.1083/jcb.116.5.1283. PMC   2289348 . PMID   1371289.
  3. 1 2 3 Wessel, Gary M.; Berg, Linnea; Adelson, David L.; Cannon, Gail; McClay, David R. (1998). "A Molecular Analysis of Hyalin—A Substrate for Cell Adhesion in the Hyaline Layer of the Sea Urchin Embryo". Developmental Biology. 193 (2): 115–126. doi: 10.1006/dbio.1997.8793 . PMID   9473317.
  4. Metese, John C.; Black, Steven; McClay, David R. (1997). "Regulated Exocytosis and Sequential Construction of the Extracellular Matrix Surrounding the Sea Urchin Zygote". Developmental Biology. 186 (1): 16–26. doi: 10.1006/dbio.1997.8585 . PMID   9188749.
  5. Schuel, Herbert; Dandekar, Pramila; Schuel, Regina (1982). "Urea Parthenogenetically Activates the Cortical Reaction and Elongation of Microvilli in Eggs of the Sea Urchin, Strongylocentrotus purpuratus". Biological Bulletin. 163 (2): 285–293. doi:10.2307/1541271. JSTOR   1541271.
  6. McClay, David R.; Fink, Rachael D (1982). "Sea Urchin Hyalin: Appearance and Function in Development". Developmental Biology. 92 (2): 285–293. doi:10.1016/0012-1606(82)90175-0. PMID   6180943.
  7. 1 2 Robinson, John J. (1988). "Roles for Ca2+, Mg2+ and NaCl in modulating the self-association reaction of hyalin, a major protein component of the sea-urchin extraembryonic hyaline layer". Biochemical Journal. 256 (1): 225–228. doi:10.1042/bj2560225. PMC   1135391 . PMID   2464994.
  8. Timourian, H; Watchmaker, G (1975). "The Sea-Urchin Blastula: Extent of Cellular Determination". American Zoologist. 15 (3): 607–627. doi: 10.1093/icb/15.3.607 .
  9. Gustafson, T.; Wolpert, L. (1967). "Cellular Movement and Contact in Sea Urchin Morphogenesis". Biological Reviews. 42 (3): 442–498. doi:10.1111/j.1469-185x.1967.tb01482.x. PMID   4864367. S2CID   39382597.
  10. Schuel, Herbert (1984). "The Prevention of Polyspermic Fertilization in Sea Urchins". Biological Bulletin. 167 (2): 271–309. doi:10.2307/1541277. JSTOR   1541277. PMID   29320238.

Related Research Articles

<span class="mw-page-title-main">Blastulation</span> Sphere of cells formed during early embryonic development in animals

Blastulation is the stage in early animal embryonic development that produces the blastula. In mammalian development the blastula develops into the blastocyst with a differentiated inner cell mass and an outer trophectoderm. The blastula is a hollow sphere of cells known as blastomeres surrounding an inner fluid-filled cavity called the blastocoel. Embryonic development begins with a sperm fertilizing an egg cell to become a zygote, which undergoes many cleavages to develop into a ball of cells called a morula. Only when the blastocoel is formed does the early embryo become a blastula. The blastula precedes the formation of the gastrula in which the germ layers of the embryo form.

<span class="mw-page-title-main">Gastrulation</span> Stage in embryonic development in which germ layers form

Gastrulation is the stage in the early embryonic development of most animals, during which the blastula, or in mammals the blastocyst is reorganized into a multilayered structure known as the gastrula. Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body, and internalized one or more cell types including the prospective gut.

<span class="mw-page-title-main">Blastocyst</span> Structure formed around day 5 of mammalian embryonic development

The blastocyst is a structure formed in the early embryonic development of mammals. It possesses an inner cell mass (ICM) also known as the embryoblast which subsequently forms the embryo, and an outer layer of trophoblast cells called the trophectoderm. This layer surrounds the inner cell mass and a fluid-filled cavity known as the blastocoel. In the late blastocyst the trophectoderm is known as the trophoblast. The trophoblast gives rise to the chorion and amnion, the two fetal membranes that surround the embryo. The placenta derives from the embryonic chorion and the underlying uterine tissue of the mother. The name "blastocyst" arises from the Greek βλαστός blastos and κύστις kystis. In other animals this is a structure consisting of an undifferentiated ball of cells and is called a blastula.

<span class="mw-page-title-main">Invagination</span> Process in embryonic development

Invagination is the process of a surface folding in on itself to form a cavity, pouch or tube. In developmental biology, invagination is a mechanism that takes place during gastrulation. This mechanism or cell movement happens mostly in the vegetal pole. Invagination consists of the folding of an area of the exterior sheet of cells towards the inside of the blastula. In each organism, the complexity will be different depending on the number of cells. Invagination can be referenced as one of the steps of the establishment of the body plan. The term, originally used in embryology, has been adopted in other disciplines as well. There is more than one type of movement for invagination. Two common types are axial and orthogonal. The difference between the production of the tube formed in the cytoskeleton and extracellular matrix. Axial can be formed at a single point along the axis of a surface. Orthogonal is linear and trough.

<span class="mw-page-title-main">Blastocoel</span>

The blastocoel, also spelled blastocoele and blastocele, and also called cleavage cavity, or segmentation cavity is a fluid-filled or yolk-filled cavity that forms in the blastula during very early embryonic development. At this stage in mammals the blastula develops into the blastocyst containing an inner cell mass, and outer trophectoderm.

A germ layer is a primary layer of cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans produce two or three primary germ layers. Some animals, like cnidarians, produce two germ layers making them diploblastic. Other animals such as bilaterians produce a third layer between these two layers, making them triploblastic. Germ layers eventually give rise to all of an animal’s tissues and organs through the process of organogenesis.

<span class="mw-page-title-main">Animal embryonic development</span> Process by which the embryo forms and develops

In developmental biology, animal embryonic development, also known as animal embryogenesis, is the developmental stage of an animal embryo. Embryonic development starts with the fertilization of an egg cell (ovum) by a sperm cell, (spermatozoon). Once fertilized, the ovum becomes a single diploid cell known as a zygote. The zygote undergoes mitotic divisions with no significant growth and cellular differentiation, leading to development of a multicellular embryo after passing through an organizational checkpoint during mid-embryogenesis. In mammals, the term refers chiefly to the early stages of prenatal development, whereas the terms fetus and fetal development describe later stages.

<span class="mw-page-title-main">Human fertilization</span> Union of a human egg and sperm

Human fertilization is the union of a human egg and sperm, occurring primarily in the ampulla of the fallopian tube. The result of this union leads to the production of a fertilized egg called a zygote, initiating embryonic development. Scientists discovered the dynamics of human fertilization in the nineteenth century.

In biology, polyspermy describes the fertilization of an egg by more than one sperm. Diploid organisms normally contain two copies of each chromosome, one from each parent. The cell resulting from polyspermy, on the other hand, contains three or more copies of each chromosome—one from the egg and one each from multiple sperm. Usually, the result is an unviable zygote. This may occur because sperm are too efficient at reaching and fertilizing eggs due to the selective pressures of sperm competition. Such a situation is often deleterious to the female: in other words, the male–male competition among sperm spills over to create sexual conflict.

<span class="mw-page-title-main">Cortical reaction</span> Biological process that prevents polyspermy

The cortical reaction is a process initiated during fertilization that prevents polyspermy, the fusion of multiple sperm with one egg. In contrast to the fast block of polyspermy which immediately but temporarily blocks additional sperm from fertilizing the egg, the cortical reaction gradually establishes a permanent barrier to sperm entry and functions as the main part of the slow block of polyspermy in many animals.

The vitelline membrane or vitelline envelope is a structure surrounding the outer surface of the plasma membrane of an ovum or, in some animals, the extracellular yolk and the oolemma. It is composed mostly of protein fibers, with protein receptors needed for sperm binding which, in turn, are bound to sperm plasma membrane receptors. The species-specificity between these receptors contributes to prevention of breeding between different species. It is called zona pellucida in mammals. Between the vitelline membrane and zona pellucida is a fluid-filled perivitelline space.

<span class="mw-page-title-main">Epiblast</span> Embryonic inner cell mass tissue that forms the embryo itself, through the three germ layers

In amniote embryonic development, the epiblast is one of two distinct cell layers arising from the inner cell mass in the mammalian blastocyst, or from the blastula in reptiles and birds, the other layer is the hypoblast. It derives the embryo proper through its differentiation into the three primary germ layers, ectoderm, mesoderm and endoderm, during gastrulation. The amnionic ectoderm and extraembryonic mesoderm also originate from the epiblast.

In the field of developmental biology, regional differentiation is the process by which different areas are identified in the development of the early embryo. The process by which the cells become specified differs between organisms.

<span class="mw-page-title-main">Human embryonic development</span> Development and formation of the human embryo

Human embryonic development, or human embryogenesis, is the development and formation of the human embryo. It is characterised by the processes of cell division and cellular differentiation of the embryo that occurs during the early stages of development. In biological terms, the development of the human body entails growth from a one-celled zygote to an adult human being. Fertilization occurs when the sperm cell successfully enters and fuses with an egg cell (ovum). The genetic material of the sperm and egg then combine to form the single cell zygote and the germinal stage of development commences. Embryonic development in the human, covers the first eight weeks of development; at the beginning of the ninth week the embryo is termed a fetus. Human embryology is the study of this development during the first eight weeks after fertilization. The normal period of gestation (pregnancy) is about nine months or 40 weeks.

<span class="mw-page-title-main">Ectoderm specification</span> Stage in embryonic development

In Xenopus laevis, the specification of the three germ layers occurs at the blastula stage. Great efforts have been made to determine the factors that specify the endoderm and mesoderm. On the other hand, only a few examples of genes that are required for ectoderm specification have been described in the last decade. The first molecule identified to be required for the specification of ectoderm was the ubiquitin ligase Ectodermin ; later, it was found that the deubiquitinating enzyme, FAM/USP9x, is able to overcome the effects of ubiquitination made by Ectodermin in Smad4. Two transcription factors have been proposed to control gene expression of ectodermal specific genes: POU91/Oct3/4 and FoxIe1/Xema. A new factor specific for the ectoderm, XFDL156, has shown to be essential for suppression of mesoderm differentiation from pluripotent cells.

Skeletogenesis is a key morphogenetic event in the embryonic development of vertebrates and is of equal, although transient, importance in the development of the sea urchin, a marine invertebrate. The larval sea urchin does not resemble its adult form, because the sea urchin is an indirect developer, meaning its larva form must undergo metamorphosis to form the juvenile adult. Here, the focus is on skeletogenesis in the sea urchin species Strongylocentrotus purpuratus, as this species has been most thoroughly studied and characterized.

Oocyteactivation is a series of processes that occur in the oocyte during fertilization.

<span class="mw-page-title-main">Cortical granule</span>

Cortical granules are regulatory secretory organelles found within oocytes and are most associated with polyspermy prevention after the event of fertilization. Cortical granules are found among all mammals, many vertebrates, and some invertebrates. Within the oocyte, cortical granules are located along the cortex, the region furthest from the cell's center. Following fertilization, a signaling pathway induces the cortical granules to fuse with the oocyte's cell membrane and release their contents into the oocyte's extracellular matrix. This exocytosis of cortical granules is known as the cortical reaction. In mammals, the oocyte's extracellular matrix includes a surrounding layer of perivitelline space, zona pellucida, and finally cumulus cells. Experimental evidence has demonstrated that the released contents of the cortical granules modify the oocyte's extracellular matrix, particularly the zona pellucida. This alteration of the zona pellucida components is known as the zona reaction. The cortical reaction does not occur in all mammals, suggesting the likelihood of other functional purposes for cortical granules. In addition to modifying the oocyte's extracellular matrix and establishing a block to polyspermy, the exocytosis of cortical granules may also contribute towards protection and support of the developing embryo during preimplantation. Once the cortical granules complete their functions, the oocyte does not replenish them.

Egg jelly is a gelatinous layer that surrounds the oocytes of many organisms and releases species-specific chemoattractants that activate and guide sperm to the oocyte. The release of chemoattractants is species dependent. For example, sperm in Lytechinus variegatus, the green sea urchin, are not chemotactically attracted to the jelly or the egg. The egg jelly is located immediately surrounding the vitelline envelope and consists primarily of a network of short peptides and sulfated fucan glycoproteins. These short peptides diffuse into the surrounding area and stimulate respiration and movement of the sperm to the egg. An example of such a peptide is resact, which has been studied as the primary means of attracting and orientating sperm to the eggs in sea urchins. The sulfated fucan glycoproteins play an important role in binding to sperm receptors and triggering the acrosomal reaction.