Hydrostatic seal

Last updated

A hydrostatic aeal is a non-contacting mechanical seal that operates under an equilibrium of forces. Unlike traditional hydrodynamic seals, Hydrostatic seals have two different pressure zones that are used to establish a balanced pressure zone between two seal faces. [1] The two pressure system makes the seal unique because typical mechanical seals have one pressure zone that created causes a buildup of pressure that will eventually cause the seal to malfunction. After pressure has come to an equilibrium at the seal face, an incompressible fluid is then released between the two seal faces. The fluid creates a film around the seal face that acts as a lubricant and as a medium for the substance flowing through the seal. Hydrostatic seals have been used in the aircraft industry; however they have seen very little commercial use because there is minimal research about the seals.

Contents

Pressure and Operation

Once pressure is applied and the seal comes together, a viscous liquid is released between the two seal faces and a thin film is formed to help create an airtight seal. If the amount of pressure inside of the seal is increased and there is an excess of pressure between the face plates, the two faces move apart and the seal begins to open. On the contrary, if the pressure is dropped and there is not enough pressure within the seal, the two seal faces come together and the hydrostatic seal begins to form. [2] The flow rate of the system can also be controlled with great accuracy by limiting the amount of pressure within the seal. Pressure zones can be changed to create an equilibrium within the system that would allow less leakage in the overall system.

Seal Face

The seals dual pressure zone helps maintain a constant pressure zone within the system. The constant pressure stabilizes the seal and does not allow the two seal faces to come in contact. There are face control grooves on both of seal faces that stabilize each face in the axial direction. The slightest axial movement will cause the two seal faces to touch and erosion of the seal will begin to occur. [3]

The rear face plate consists of a small opening that houses the injection system, which feeds the incompressible fluids through the system. Once the fluid is inside the seal, it forms a thin film around the entire inner system. After creating the film, the fluids then flow out of the seal and on to the rear face plate, which cools the system and prevents any excess heat from building up. [4] This fluid cycle is continuously repeated while the seal is in operation.

Applications

Hydrostatic seals were first developed in the early 1960s to control the sealing of compressor air in the aircraft industry. Recently hydrostatic seals have only been used in the compressor industry because hydrodynamic seals have much greater application. The hydrostatic seal also has great potential in the chemical industry since it can be used to transport and seal chemicals. However, the chemical industry has set very strict regulations and the seal cannot be used for certain chemicals because of the constant seal leakage. [1] [5]

Generations of hydrostatic seals

First generation

The first hydrostatic seal was developed to replace current hydrodynamic seals; previous hydrodynamic seals were costly to manufacture and were tedious to assemble. First generation hydrostatic seals used a two pressure system to establish equilibrium at the seal face. The seal face was developed to work under high pressure conditions, however the seal face began to warp and deteriorate during stress tests. Once ammonia ( the liquid used in the first hydrostatic seal ) was added, the two seal faces would make contact with each other and begin the erosion process. Cold water was then tested as the incompressible fluid, it has double the viscosity as ammonia, which showed favorable results. Since cold water had double the viscosity of ammonia, the water prevented the seals from making contact with each other, thus causing the system to run properly. [2]

First Generation: Issues

- High pressure conditions

- recycles fluid in a continuous cycle, may have stagnant fluids which cause blockage

- Seal faces began to erode under certain circumstances

Second Generation

The second hydrostatic seal was an attempt to resolve first generation hydrostatic seal problems: erosion of seals, high pressure build up, and stagnant fluids. Second generation hydrostatic seals had a redesigned seal face; new face control grooves were added to help stabilize the seals while under extreme conditions. Prior to the face control grooves, the seal faces were not balanced and would begin to move under high pressure conditions. Due to the movement, the seal faces would become misaligned when the seals moved, and that caused the seal faces to deteriorate, resulting in an unusable seal. [2]

Second generation: Upgrades

- attempt to fix warping caused by system error

- added face control grooves to prevent any erosion of seal faces

- resolved any areas where fluid remains stagnant and cause blockage

Arising Problems

Hydrostatic seals should last multiple years without any deterioration to its components due to its overall structure. There should not be any contact between the two seal faces or else the condition of the seal will begin to deteriorate. Current Hydrodynamic seals begin to deteriorate over time because the two faces are always in contact with each other.

In addition, any misalignment of the seal faces will cause them to rub which will begin to morph the seal faces and eventually cause the entire seal to become structurally unstable. Izchak Etsion, a researcher at the Lewis Research Center, conducted an experiment to test what happens to a hydrostatic seal when its faces are misaligned. Etsion discovered that high pressures directed towards the outer face of the seal would cause static instability, while high pressure on the inner face of the seal would cause the seal to become more stable. [6] In addition, axial misalignment would also cause the horizontal shaft to shift in the vertical direction; this misalignment would result in a faulty seal if the restoring force is not great enough to correct the shift in components.

Leakage

The structure of the seal brings up the problem of leakage within the system. Since there is always a minuscule gap between two parts, there is always the problem of leakage, however the system’s structure allows leakage to be controlled to a very precise level.

Another problem that arises about hydrostatic seals is that excess leakage may eventually lead to erosion of the seal’s structure. Due to the axially rotating face seal, any excess leakage will have a high fluid velocity which can erode away at the face plates, eventually leading to a faulty seal. [2]

Related Research Articles

Cavitation Formation of vapour-filled low-pressure voids in a liquid

Cavitation is a phenomenon in which rapid changes of pressure in a liquid lead to the formation of small vapor-filled cavities in places where the pressure is relatively low.

Fluid dynamics Aspects of fluid mechanics involving flow

In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

In fluid mechanics, a fluid is said to be in hydrostatic equilibrium or hydrostatic balance when it is at rest, or when the flow velocity for each parcel of fluid is constant over time. This occurs when external forces such as gravity are balanced by a pressure-gradient force. For instance, the pressure-gradient force prevents gravity from collapsing Earth's atmosphere into a thin, dense shell, whereas gravity prevents the pressure gradient force from diffusing the atmosphere into space.

Fluid bearings are bearings in which the load is supported by a thin layer of rapidly moving pressurized liquid or gas between the bearing surfaces. Since there is no contact between the moving parts, there is no sliding friction, allowing fluid bearings to have lower friction, wear and vibration than many other types of bearings. Thus, it is possible for some fluid bearings to have near-zero wear if operated correctly.

End-face mechanical seal type of seal utilised in rotating equipment

An end-face mechanical seal, or a mechanical end-face seal, also referred to as a mechanical face seal but usually simply as a mechanical seal, is a type of seal used in rotating equipment, such as pumps, mixers, blowers, and compressors. When a pump operates, the liquid could leak out of the pump between the rotating shaft and the stationary pump casing. Since the shaft rotates, preventing this leakage can be difficult. Earlier pump models used mechanical packing to seal the shaft. Since World War II, mechanical seals have replaced packing in many applications.

Lubrication The presence of a material to reduce friction between two surfaces.

Lubrication is the process or technique of using a lubricant to reduce friction and wear and tear in a contact between two surfaces. The study of lubrication is a discipline in the field of tribology.

Hydrostatics Branch of fluid mechanics that studies fluids at rest

Fluid statics or hydrostatics is the branch of fluid mechanics that studies "fluids at rest and the pressure in a fluid or exerted by a fluid on an immersed body".

Plain bearing Simplest type of bearing, comprising just a bearing surface and no rolling elements

A plain bearing, or more commonly sliding bearing and slide bearing, is the simplest type of bearing, comprising just a bearing surface and no rolling elements. Therefore, the journal slides over the bearing surface. The simplest example of a plain bearing is a shaft rotating in a hole. A simple linear bearing can be a pair of flat surfaces designed to allow motion; e.g., a drawer and the slides it rests on or the ways on the bed of a lathe.

Seal (mechanical) device that completely prevents the flow of air or other fluids

A mechanical seal is a device that helps join systems or mechanisms together by preventing leakage, containing pressure, or excluding contamination. The effectiveness of a seal is dependent on adhesion in the case of sealants and compression in the case of gaskets.

Hydraulic machinery machinery and tools that use liquid fluid power to do simple work

Hydraulic machines use liquid fluid power to perform work. Heavy construction vehicles are a common example. In this type of machine, hydraulic fluid is pumped to various hydraulic motors and hydraulic cylinders throughout the machine and becomes pressurized according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses, tubes, and/or pipes.

Coastal morphodynamics refers to the study of the interaction and adjustment of the seafloor topography and fluid hydrodynamic processes, seafloor morphologies and sequences of change dynamics involving the motion of sediment. Hydrodynamic processes include those of waves, tides and wind-induced currents.

Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, civil, chemical and biomedical engineering, geophysics, oceanography, meteorology, astrophysics, and biology.

A leak is a way for fluid to escape a container or fluid-containing system, such as a tank or a ship's hull, through which the contents of the container can escape or outside matter can enter the container. Leaks are usually unintended and therefore undesired. The word leak usually refers to a gradual loss; a sudden loss is usually called a spill.

Axial piston pump

An axial piston pump is a positive displacement pump that has a number of pistons in a circular array within a cylinder block. It can be used as a stand-alone pump, a hydraulic motor or an automotive air conditioning compressor.

Hydraulic motor hydro pohon

A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, the category of devices called hydraulic motors has sometimes included those that run on hydropower but in today's terminology the name usually refers more specifically to motors that use hydraulic fluid as part of closed hydraulic circuits in modern hydraulic machinery.

Hydraulic pump type of a pump

Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. It generates flow with enough power to overcome pressure induced by the load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical action delivers this liquid to the pump outlet and forces it into the hydraulic system. Hydrostatic pumps are positive displacement pumps while hydrodynamic pumps can be fixed displacement pumps, in which the displacement cannot be adjusted, or variable displacement pumps, which have a more complicated construction that allows the displacement to be adjusted. Hydrodynamic pumps are more frequent in day-to-day life. Hydrostatic pumps of various types all work on the principle of Pascal's law.

Metal bellows are elastic vessels that can be compressed when pressure is applied to the outside of the vessel, or extended under vacuum. When the pressure or vacuum is released, the bellows will return to its original shape, provided the material has not been stressed past its yield strength. They are used both for their ability to deform under pressure and to provide a hermetic seal that allows movement.

Hydrodynamic stability

In fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by Helmholtz, Kelvin, Rayleigh and Reynolds during the nineteenth century. These foundations have given many useful tools to study hydrodynamic stability. These include Reynolds number, the Euler equations, and the Navier–Stokes equations. When studying flow stability it is useful to understand more simplistic systems, e.g. incompressible and inviscid fluids which can then be developed further onto more complex flows. Since the 1980s, more computational methods are being used to model and analyse the more complex flows.

Spiral groove bearing Hydrodynamic bearings using spiral grooves to develop lubricant pressure

Spiral groove bearings are self-acting, or hydrodynamic bearings used to reduce friction and wear without the use of pressurized lubricants. They have this ability due to special patterns of grooves. Spiral groove bearings are self-acting because their own rotation builds up the pressure needed to separate the bearing surfaces. For this reason, they are also contactless bearings.

Computational fluid dynamics (CFD) are used to understand complex thermal flow regimes in power plants. The thermal power plant may be divided into different subsectors and the CFD analysis applied to critical equipment/components - mainly different types of heat exchangers - which are of crucial significance for efficient and trouble free long-term operation of the plant.

References

  1. 1 2 "Hydrostatic sealing". www.mcnallyinstitute.com. Retrieved 2016-10-25.
  2. 1 2 3 4 "A Cavitation Resistant Hydrostatic Seal for High Pressure Breakdown" (PDF).
  3. Prouty, Warren Conrad; Bond, John Clark (May 26, 1998), Hydrostatic seal , retrieved 2016-11-03
  4. Heinen, Manfred (Sep 23, 1986), Hydrostatic and hydrodynamic seal for rotating a rotating shaft , retrieved 2016-10-26
  5. "Hydrostatic seal". www.mcnallyinstitute.com. Retrieved 2016-11-04.
  6. Etsion, Izhak (November 1976). "Nonaxisymmetric Incompressible Hydrostatic Pressure Effects in Radial Face Seals" (PDF). ntrs.nasa.gov. Retrieved 2016-10-29.