Immunogold labelling

Last updated
Two images produced using immunogold labeling and transmission electron microscopy: (A) Gold particles are marking mtDNA near the mitochondria (B) mtDNA marked with gold particles after extraction. Electron microscopy reveals mitochondrial DNA in discrete foci.jpg
Two images produced using immunogold labeling and transmission electron microscopy: (A) Gold particles are marking mtDNA near the mitochondria (B) mtDNA marked with gold particles after extraction.

Immunogold labeling or immunogold staining (IGS) is a staining technique used in electron microscopy. [2] This staining technique is an equivalent of the indirect immunofluorescence technique for visible light. Colloidal gold particles are most often attached to secondary antibodies which are in turn attached to primary antibodies designed to bind a specific antigen or other cell component. Gold is used for its high electron density which increases electron scatter to give high contrast 'dark spots'. [3]

Contents

First used in 1971, immunogold labeling has been applied to both transmission electron microscopy and scanning electron microscopy, as well as brightfield microscopy. The labeling technique can be adapted to distinguish multiple objects by using differently-sized gold particles.

Immunogold labeling can introduce artifacts, as the gold particles reside some distance from the labelled object and very thin sectioning is required during sample preparation. [3]

History

Immunogold labeling was first used in 1971 by Faulk and Taylor to identify Salmonella antigens. [2] [4] It was first applied in transmission electron microscopy (TEM) and was especially useful in highlighting proteins found in low densities, such as some cell surface antigens. [5] As the resolution of scanning electron microscopy (SEM) increased, so too did the need for nanoparticle-sized labels such as immunogold. In 1975, Horisberger and coworkers successfully visualised gold nanoparticles with a diameter of less than 30 nm [6] and this soon became an established SEM technique. [5]

Technique

First, a thin section of the sample is cut, often using a microtome. [7] Various other stages of sample preparation may then take place.

The prepared sample is then incubated with a specific antibody designed to bind the molecule of interest. [3] Next, a secondary antibody which has gold particles attached is added, and it binds to the primary antibody. Gold can also be attached to protein A or protein G instead of a secondary antibody, as these proteins bind mammalian IgG Fc regions in a non-specific way. [6]

The electron-dense gold particle can now be seen under an electron microscope as a black dot, indirectly labeling the molecule of interest. [3]

Labeling multiple objects

Immunogold labeling can be used to visualize more than one target simultaneously. This can be achieved in electron microscopy by using two different-sized gold particles. [8] An extension of this method used three different sized gold particles to track the localisation of regulatory peptides. [9] A more complex method of multi-site labeling involves labeling opposite sides of an antigenic site separately, the immunogold particles attached to both sides can then be viewed simultaneously. [10]

Uses in brightfield microscopy

Although immunogold labeling is typically used for transmission electron microscopy, when the gold is 'silver-enhanced' it can be seen using brightfield microscopy. [11] The silver enhancement increases the particle size, also making scanning electron microscopy possible. In order to produce the silver-enhanced gold particles, colloidal gold particles are placed in an acidic enhancing solution containing silver ions. Gold particles then act as a nucleation site and silver is deposited onto the particle. An example of the application of silver-enhanced immunogold labeling (IGSS) was in the identification of the pathogen Erwinia amylovora . [11]

Limitations

An inherent limitation to the immunogold technique is that the gold particle is around 15-30 nm away from the site to which the primary antibody is bound [5] (when using a primary and secondary antibodies labeling strategy). The precise location of the targeted molecule can therefore not be accurately calculated. Gold particles can be created with a diameter of 1  nm (or lower) but another limitation is then realized—at these sizes the gold label becomes hard to distinguish from tissue structure. [2] [5]

Thin sections are required for immunogold labeling and these can produce misleading images; a thin slice of a cell component may not give an accurate view of its three-dimensional structure. For example, a microtubule may appear as a 'spike' depending on which plane the sectioning occurred. To overcome this limitation serial sections can be taken, which can then be compiled into a three-dimensional image. [3]

A further limitation is that antibodies and gold particles cannot penetrate the resin used to embed samples for imaging. Thus, only accessible molecules can be targeted and visualized. Labeling prior to embedding the sample can reduce the negative impact of this limitation. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Electron microscope</span> Type of microscope with electrons as a source of illumination

An electron microscope is a microscope that uses a beam of electrons as a source of illumination. They use electron optics that are analogous to the glass lenses of an optical light microscope to control the electron beam, for instance focusing them to produce magnified images or electron diffraction patterns. As the wavelength of an electron can be up to 100,000 times smaller than that of visible light, electron microscopes have a much higher resolution of about 0.1 nm, which compares to about 200 nm for light microscopes. Electron microscope may refer to:

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

Immunoperoxidase is a type of immunostain used in molecular biology, medical research, and clinical diagnostics. In particular, immunoperoxidase reactions refer to a sub-class of immunohistochemical or immunocytochemical procedures in which the antibodies are visualized via a peroxidase-catalyzed reaction.

<span class="mw-page-title-main">ELISA</span> Method to detect an antigen using an antibody and enzyme

The enzyme-linked immunosorbent assay (ELISA) is a commonly used analytical biochemistry assay, first described by Eva Engvall and Peter Perlmann in 1971. The assay uses a solid-phase type of enzyme immunoassay (EIA) to detect the presence of a ligand in a liquid sample using antibodies directed against the protein to be measured. ELISA has been used as a diagnostic tool in medicine, plant pathology, and biotechnology, as well as a quality control check in various industries.

An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that binds to the epitope is called a paratope. Although epitopes are usually non-self proteins, sequences derived from the host that can be recognized are also epitopes.

<span class="mw-page-title-main">Immunostaining</span> Biochemical technique

In biochemistry, immunostaining is any use of an antibody-based method to detect a specific protein in a sample. The term "immunostaining" was originally used to refer to the immunohistochemical staining of tissue sections, as first described by Albert Coons in 1941. However, immunostaining now encompasses a broad range of techniques used in histology, cell biology, and molecular biology that use antibody-based staining methods.

<span class="mw-page-title-main">Phalloidin</span> Chemical compound

Phalloidin belongs to a class of toxins called phallotoxins, which are found in the death cap mushroom (Amanita phalloides). It is a rigid bicyclic heptapeptide that is lethal after a few days when injected into the bloodstream. The major symptom of phalloidin poisoning is acute hunger due to the destruction of liver cells. It functions by binding and stabilizing filamentous actin (F-actin) and effectively prevents the depolymerization of actin fibers. Due to its tight and selective binding to F-actin, derivatives of phalloidin containing fluorescent tags are used widely in microscopy to visualize F-actin in biomedical research.

<span class="mw-page-title-main">Immunofluorescence</span> Technique used for light microscopy

Immunofluorescence is a technique used for light microscopy with a fluorescence microscope and is used primarily on biological samples. This technique uses the specificity of antibodies to their antigen to target fluorescent dyes to specific biomolecule targets within a cell, and therefore allows visualization of the distribution of the target molecule through the sample. The specific region an antibody recognizes on an antigen is called an epitope. There have been efforts in epitope mapping since many antibodies can bind the same epitope and levels of binding between antibodies that recognize the same epitope can vary. Additionally, the binding of the fluorophore to the antibody itself cannot interfere with the immunological specificity of the antibody or the binding capacity of its antigen. Immunofluorescence is a widely used example of immunostaining and is a specific example of immunohistochemistry. This technique primarily makes use of fluorophores to visualise the location of the antibodies.

<span class="mw-page-title-main">Immunohistochemistry</span> Common application of immunostaining

Immunohistochemistry (IHC) is the most common application of immunostaining. It involves the process of selectively identifying antigens (proteins) in cells of a tissue section by exploiting the principle of antibodies binding specifically to antigens in biological tissues. IHC takes its name from the roots "immuno", in reference to antibodies used in the procedure, and "histo", meaning tissue. Albert Coons conceptualized and first implemented the procedure in 1941.

<span class="mw-page-title-main">Fluorescence microscope</span> Optical microscope that uses fluorescence and phosphorescence

A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microscope" refers to any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image.

<span class="mw-page-title-main">Immunoassay</span> Biochemical test for a protein or other molecule using an antibody

An immunoassay (IA) is a biochemical test that measures the presence or concentration of a macromolecule or a small molecule in a solution through the use of an antibody (usually) or an antigen (sometimes). The molecule detected by the immunoassay is often referred to as an "analyte" and is in many cases a protein, although it may be other kinds of molecules, of different sizes and types, as long as the proper antibodies that have the required properties for the assay are developed. Analytes in biological liquids such as serum or urine are frequently measured using immunoassays for medical and research purposes.

<span class="mw-page-title-main">DAPI</span> Fluorescent stain

DAPI, or 4′,6-diamidino-2-phenylindole, is a fluorescent stain that binds strongly to adenine–thymine-rich regions in DNA. It is used extensively in fluorescence microscopy. As DAPI can pass through an intact cell membrane, it can be used to stain both live and fixed cells, though it passes through the membrane less efficiently in live cells and therefore provides a marker for membrane viability.

<span class="mw-page-title-main">Immunocytochemistry</span>

Immunocytochemistry (ICC) is a common laboratory technique that is used to anatomically visualize the localization of a specific protein or antigen in cells by use of a specific primary antibody that binds to it. The primary antibody allows visualization of the protein under a fluorescence microscope when it is bound by a secondary antibody that has a conjugated fluorophore. ICC allows researchers to evaluate whether or not cells in a particular sample express the antigen in question. In cases where an immunopositive signal is found, ICC also allows researchers to determine which sub-cellular compartments are expressing the antigen.

<span class="mw-page-title-main">Immunolabeling</span> Procedure for detection and localization of an antigen

Immunolabeling is a biochemical process that enables the detection and localization of an antigen to a particular site within a cell, tissue, or organ. Antigens are organic molecules, usually proteins, capable of binding to an antibody. These antigens can be visualized using a combination of antigen-specific antibody as well as a means of detection, called a tag, that is covalently linked to the antibody. If the immunolabeling process is meant to reveal information about a cell or its substructures, the process is called immunocytochemistry. Immunolabeling of larger structures is called immunohistochemistry.

<span class="mw-page-title-main">Fluorescence in the life sciences</span> Scientific investigative technique

Fluorescence is used in the life sciences generally as a non-destructive way of tracking or analysing biological molecules. Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence. Alternatively, specific or general proteins, nucleic acids, lipids or small molecules can be "labelled" with an extrinsic fluorophore, a fluorescent dye which can be a small molecule, protein or quantum dot. Several techniques exist to exploit additional properties of fluorophores, such as fluorescence resonance energy transfer, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to be detected; another is the change in properties, such as intensity, of certain dyes depending on their environment allowing their use in structural studies.

Virus quantification is counting or calculating the number of virus particles (virions) in a sample to determine the virus concentration. It is used in both research and development (R&D) in academic and commercial laboratories as well as in production situations where the quantity of virus at various steps is an important variable that must be monitored. For example, the production of virus-based vaccines, recombinant proteins using viral vectors, and viral antigens all require virus quantification to continually monitor and/or modify the process in order to optimize product quality and production yields and to respond to ever changing demands and applications. Other examples of specific instances where viruses need to be quantified include clone screening, multiplicity of infection (MOI) optimization, and adaptation of methods to cell culture.

<span class="mw-page-title-main">Nanoscale secondary ion mass spectrometry</span>

NanoSIMS is an analytical instrument manufactured by CAMECA which operates on the principle of secondary ion mass spectrometry. The NanoSIMS is used to acquire nanoscale resolution measurements of the elemental and isotopic composition of a sample. The NanoSIMS is able to create nanoscale maps of elemental or isotopic distribution, parallel acquisition of up to seven masses, isotopic identification, high mass resolution, subparts-per-million sensitivity with spatial resolution down to 50 nm.

Surface plasmon resonance microscopy (SPRM), also called surface plasmon resonance imaging (SPRI), is a label free analytical tool that combines the surface plasmon resonance of metallic surfaces with imaging of the metallic surface. The heterogeneity of the refractive index of the metallic surface imparts high contrast images, caused by the shift in the resonance angle. SPRM can achieve a sub-nanometer thickness sensitivity and lateral resolution achieves values of micrometer scale. SPRM is used to characterize surfaces such as self-assembled monolayers, multilayer films, metal nanoparticles, oligonucleotide arrays, and binding and reduction reactions. Surface plasmon polaritons are surface electromagnetic waves coupled to oscillating free electrons of a metallic surface that propagate along a metal/dielectric interface. Since polaritons are highly sensitive to small changes in the refractive index of the metallic material, it can be used as a biosensing tool that does not require labeling. SPRM measurements can be made in real-time, such as measuring binding kinetics of membrane proteins in single cells, or DNA hybridization.

Expansion microscopy (ExM) is a sample preparation tool for biological samples that allows investigators to identify small structures by expanding them using a polymer system. The premise is to introduce a polymer network into cellular or tissue samples, and then physically expand that polymer network using chemical reactions to increase the size of the biological structures. Among other benefits, ExM allows those small structures to be imaged with a wider range of microscopy techniques. It was first proposed in a 2015 article by Fei Chen, Paul W. Tillberg, and Edward Boyden. Current research allows for the expansion of samples up to 16x larger than their initial size. This technique has been found useful in various laboratory settings, such as analyzing biological molecules. ExM allows researchers to use standard equipment in identifying small structures, but requires following of procedures in order to ensure clear results.

<span class="mw-page-title-main">Immune electron microscopy</span> Variant of electron microscopy

Immune electron microscopy is the equivalent of immunofluorescence, but it uses electron microscopy rather than light microscopy. Immunoelectron microscopy identifies and localizes a molecule of interest, specifically a protein of interest, by attaching it to a particular antibody. This bond can form before or after embedding the cells into slides. A reaction occurs between the antigen and antibody, causing this label to become visible under the microscope. Scanning electron microscopy is a viable option if the antigen is on the surface of the cell, but transmission electron microscopy may be needed to see the label if the antigen is within the cell.

References

  1. Iborra FJ, Kimura H, Cook PR (2004). "The functional organization of mitochondrial genomes in human cells". BMC Biol. 2: 9. doi: 10.1186/1741-7007-2-9 . PMC   425603 . PMID   15157274.
  2. 1 2 3 "Immunogold Labeling in Scanning Electron Microscopy". Archived from the original on 2014-02-06. Retrieved 2010-07-08.
  3. 1 2 3 4 5 6 Alberts, Bruce; et al. (2008). Molecular biology of the cell (5th ed.). New York: Garland Science. ISBN   978-0-8153-4106-2.
  4. Faulk WP, Taylor GM (November 1971). "An immunocolloid method for the electron microscope". Immunochemistry. 8 (11): 1081–3. doi:10.1016/0019-2791(71)90496-4. PMID   4110101.
  5. 1 2 3 4 Hermann R, Walther P, Müller M (1996). "Immunogold labeling in scanning electron microscopy". Histochemistry and Cell Biology. 106 (1): 31–39. doi:10.1007/BF02473200. PMID   8858365.
  6. 1 2 Roth J, Bendayan M, Orci L (December 1978). "Ultrastructural localization of intracellular antigens by the use of protein A-gold complex". J. Histochem. Cytochem. 26 (12): 1074–81. doi: 10.1177/26.12.366014 . PMID   366014.
  7. Porter, K; Blum, J (1953). "A study in Microtomy for Electron Microscopy". The Anatomical Record. 117 (4): 685–710. doi:10.1002/ar.1091170403. PMID   13124776.
  8. Roth J, Binder M (March 1978). "Coloidal gold, ferritin and peroxidase as markers for electron microscopic double labeling lectin techniques". J. Histochem. Cytochem. 26 (3): 163–9. doi: 10.1177/26.3.632554 . PMID   632554.
  9. Tapia FJ, Varndell IM, Probert L, De Mey J, Polak JM (July 1983). "Double immunogold staining method for the simultaneous ultrastructural localization of regulatory peptides". J. Histochem. Cytochem. 31 (7): 977–81. doi: 10.1177/31.7.6189888 . PMID   6189888.
  10. Bendayan M (January 1982). "Double immunocytochemical labeling applying the protein A-gold technique". J. Histochem. Cytochem. 30 (1): 81–5. doi:10.1177/30.1.6172469. PMID   6172469.
  11. 1 2 Van Laere O, De Wael L, De Mey J (1985). "Immuno gold staining (IGS) and immuno gold silver staining (IGSS) for the identification of the plant pathogenic bacterium Erwinia amylovora (Burrill) Winslow et al". Histochemistry. 83 (5): 397–9. doi:10.1007/BF00509198. PMID   2416717.