Infineon AURIX

Last updated

AURIX (Automotive Realtime Integrated Next Generation Architecture) is a 32-bit Infineon microcontroller family, targeting the automotive industry. [1] It is based on multicore architecture of up to three independent 32-bit TriCore CPUs. [2]

Contents

Applications

The AURIX series has been used in some artificial intelligence applications, in electric vehicles, [3] and in the navigation systems of self-driving cars. [4]

Technical features

System performance

The AURIX family devices range from a 300 MHz three-core device with 8MB embedded Flash down to 130 MHz and 80 MHz single-core and single core lockstep devices with 1.5MB, 1MB and 0.5MB of embedded Flash. The package portfolio includes a BGA-516 package with a ball-compatible BGA-292 package (I/O subset), and compatible QFP-176, QFP-144, QFP‑100 to QFP-64 packages.

TRICOR DSP functionality

Safety Features

The AURIX architecture has been developed according to an audited ISO26262-compliant process and designed to meet ASIL-D on an application level. The platform uses up to 2 cores in TriCore lockstep mode, a lockstep architecture combined with safety technology such as internal communication buses or distributed memory protection systems. Hardware level encapsulation techniques allow integration of software with various safety levels (QM to ASIL-D) from different sources, reducing the system complexity of implementing those safety levels.

The AURIX architecture offers the following features:

Security Features

Infineon has integrated a programmable Hardware Security Module (HSM) into the AURIX family in line with EVITA (E-safety vehicle intrusion protected applications). This “embedded chipcard” protects against IP infringement, fraud and software hijacking.

Scalability

Connectivity

Supply security

Infineon has set up dual-fab manufacturing using two local separated Frontend production sites. Both sites are using identical certified processes and tooling. All products from both sides will be AEC-Q100 qualified and are manufactured in a 65 nm technology.

Tools and software

Infineon has several full-featured evaluation boards for their TriCore product line. [5] Development tools for evaluation such as compilers, debuggers and AURIX Development Studio [6] IDE are included, as well as technical documentation: user manuals, architecture manuals, application notes, data sheets, board documentation.

Related Research Articles

<span class="mw-page-title-main">AVR microcontrollers</span> Family of microcontrollers

AVR is a family of microcontrollers developed since 1996 by Atmel, acquired by Microchip Technology in 2016. These are modified Harvard architecture 8-bit RISC single-chip microcontrollers. AVR was one of the first microcontroller families to use on-chip flash memory for program storage, as opposed to one-time programmable ROM, EPROM, or EEPROM used by other microcontrollers at the time.

Nucleus RTOS is a real-time operating system (RTOS) produced by the Embedded Software Division of Mentor Graphics, a Siemens Business, supporting 32- and 64-bit embedded system platforms. The operating system (OS) is designed for real-time embedded systems for medical, industrial, consumer, aerospace, and Internet of things (IoT) uses. Nucleus was released first in 1993. The latest version is 3.x, and includes features such as power management, process model, 64-bit support, safety certification, and support for heterogeneous computing multi-core system on a chip (SOCs) processors.

Nios II is a 32-bit embedded processor architecture designed specifically for the Altera family of field-programmable gate array (FPGA) integrated circuits. Nios II incorporates many enhancements over the original Nios architecture, making it more suitable for a wider range of embedded computing applications, from digital signal processing (DSP) to system-control.

The MicroBlaze is a soft microprocessor core designed for Xilinx field-programmable gate arrays (FPGA). As a soft-core processor, MicroBlaze is implemented entirely in the general-purpose memory and logic fabric of Xilinx FPGAs.

TriCore is a 32-bit microcontroller architecture from Infineon. It unites the elements of a RISC processor core, a microcontroller and a DSP in one chip package.

ARM9 is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings for microcontroller use. The ARM9 core family consists of ARM9TDMI, ARM940T, ARM9E-S, ARM966E-S, ARM920T, ARM922T, ARM946E-S, ARM9EJ-S, ARM926EJ-S, ARM968E-S, ARM996HS. Since ARM9 cores were released from 1998 to 2006, they are no longer recommended for new IC designs, instead ARM Cortex-A, ARM Cortex-M, ARM Cortex-R cores are preferred.

ISO 26262, titled "Road vehicles – Functional safety", is an international standard for functional safety of electrical and/or electronic systems that are installed in serial production road vehicles, defined by the International Organization for Standardization (ISO) in 2011, and revised in 2018.

<span class="mw-page-title-main">XC800 family</span>

The Infineon XC800 family is an 8-bit microcontroller family, first introduced in 2005, with a dual cycle optimized 8051 "E-Warp" core. The XC800 family is divided into two categories, the A-Family for Automotive and the I-Family for Industrial and multi-market applications.

<span class="mw-page-title-main">DAvE (Infineon)</span> Software development & code generation tool

DAVE (Infineon) Digital Application Virtual Engineer (DAVE), is a C/C++-language software development and code generation tool for microcontroller applications. DAVE is a standalone system with automatic code generation modules. It is suited for the development of software drivers for Infineon microcontrollers and aids the developer with automatically created C-level templates and user-desired functionalities.

Multicore is a series of 32-bit microprocessors with embedded DSP cores developed by ELVEES, Russia. The microprocessor is a MIPS32 core or an ARM Cortex-A9 core. Some of the processors in the series are radiation hardened (rad-hard) for space applications.

The Infineon XC2000 family is a 16-bit microcontroller that can be found in automotive applications including transmissions, hybrid applications, driver assistant systems and engine management.

XMC is a family of microcontroller ICs by Infineon. The XMC microcontrollers use the 32-bit RISC ARM processor cores from ARM Holdings, such as Cortex-M4F and Cortex-M0. XMC stands for "cross-market microcontrollers", meaning that this family can cover due to compatibility and configuration options, a wide range in industrial applications. The family supports three essential trends in the industry: It increases the energy efficiency of the systems, supports a variety of communication standards and reduces software complexity in the development of the application's software environment with the parallel released eclipse-based software tool DAVE.

Automotive Safety Integrity Level (ASIL) is a risk classification scheme defined by the ISO 26262 - Functional Safety for Road Vehicles standard. This is an adaptation of the Safety Integrity Level (SIL) used in IEC 61508 for the automotive industry. This classification helps defining the safety requirements necessary to be in line with the ISO 26262 standard. The ASIL is established by performing a risk analysis of a potential hazard by looking at the Severity, Exposure and Controllability of the vehicle operating scenario. The safety goal for that hazard in turn carries the ASIL requirements.

Hercules is a line of ARM architecture-based microcontrollers from Texas Instruments built around one or more ARM Cortex cores. This "Hercules safety microcontroller platform" includes series microcontrollers specifically targeted for Functional Safety applications, through such hardware-base fault correction/detection features as dual cores that can run in lock-step, full path ECC, automated self testing of memory and logic, peripheral redundancy, and monitor/checker cores.

Qorivva is a line of Power ISA 2.03-based microcontrollers from Freescale built around one or more PowerPC e200 cores. Within this line are a number of products specifically targeted for functional safety applications. The hardware-based fault detection and correction features found within this line include dual cores that may run in lock-step, full-path ECC, automated self-testing of memory and logic, peripheral redundancy, and monitor/checker cores.

The MSP432 is a mixed-signal microcontroller family from Texas Instruments. It is based on a 32-bit ARM Cortex-M4F CPU, and extends their 16-bit MSP430 line, with a larger address space for code and data, and faster integer and floating point calculation than the MSP430. Like the MSP430, it has a number of built-in peripheral devices, and is designed for low power requirements. In 2021, TI confirmed that the MSP432 has been discontinued and "there will be no new MSP432 products".

TASKING GmbH is a provider of embedded-software development tools headquartered in Munich, Germany.

<span class="mw-page-title-main">SHAKTI (microprocessor)</span> Technology project funded by the Government of India

SHAKTI is an open-source initiative by the Reconfigurable Intelligent Systems Engineering (RISE) group at Indian Institute of Technology, Madras to develop the first indigenous Indian industrial-grade processor. The aim of SHAKTI initiative includes building an opensource production-grade processor, complete system on chips (SoCs), development boards and SHAKTI based software platform. The primary focus of the team is architecture research to develop SoCs, which is competitive with commercial offerings in the market concerning area, power and performance. All the source codes for SHAKTI are open-sourced under the Modified BSD License. The project was funded by the Ministry of Electronics and Information Technology (MeITY), Government of India.

References

  1. "New Chips from Infineon, TI, and Toshiba Drive Advances in Autonomous Driving - News". www.allaboutcircuits.com. Retrieved 2022-06-25.
  2. "Infineon AURIX Microcontrollers - iSYSTEM". www.isystem.com. Retrieved 2022-06-25.
  3. www.ETAuto.com. "Infineon launches next gen AURIX Microcontroller for automated cars, EVs - ET Auto". ETAuto.com. Retrieved 2022-06-25.
  4. Vicinanza, Stephen (2022-06-10). "Infineon Launches The AURIX Family Of Microcontrollers, A Big Innovation In Car Electrification And Digitization". Circuit Cellar. Retrieved 2022-06-25.
  5. "32-bit AURIX TriCore Microcontroller - Infineon Technologies". Infineon.com. Archived from the original on 2017-08-31. Retrieved 2021-12-31.
  6. "AURIX Development Studio - Infineon Technologies". Infineon.com. Archived from the original on 2021-08-03. Retrieved 2021-12-31.