Infinite divisibility

Last updated

Infinite divisibility arises in different ways in philosophy, physics, economics, order theory (a branch of mathematics), and probability theory (also a branch of mathematics). One may speak of infinite divisibility, or the lack thereof, of matter, space, time, money, or abstract mathematical objects such as the continuum.

Contents

In philosophy

The origin of the idea in the Western tradition can be traced to the 5th century BCE starting with the Ancient Greek pre-Socratic philosopher Democritus and his teacher Leucippus, who theorized matter's divisibility beyond what can be perceived by the senses until ultimately ending at an indivisible atom. The Indian philosopher, Maharshi Kanada also proposed an atomistic theory, however there is ambiguity around when this philosopher lived, ranging from sometime between the 6th century to 2nd century BCE. Around 500 BC, he postulated that if we go on dividing matter ( padarth ), we shall get smaller and smaller particles. Ultimately, a time will come when we shall come across the smallest particles beyond which further division will not be possible. He named these particles Parmanu. Another Indian philosopher, Pakudha Katyayama, elaborated this doctrine and said that these particles normally exist in a combined form which gives us various forms of matter. [1] [2] Atomism is explored in Plato's dialogue Timaeus. Aristotle proves that both length and time are infinitely divisible, refuting atomism. [3] Andrew Pyle gives a lucid account of infinite divisibility in the first few pages of his Atomism and its Critics. There he shows how infinite divisibility involves the idea that there is some extended item, such as an apple, which can be divided infinitely many times, where one never divides down to point, or to atoms of any sort. Many philosophers[ who? ] claim that infinite divisibility involves either a collection of an infinite number of items (since there are infinite divisions, there must be an infinite collection of objects), or (more rarely), point-sized items, or both. Pyle states that the mathematics of infinitely divisible extensions involve neither of these — that there are infinite divisions, but only finite collections of objects and they never are divided down to point extension-less items.

Zeno questioned how an arrow can move if at one moment it is here and motionless and at a later moment be somewhere else and motionless.

Zeno's reasoning, however, is fallacious, when he says that if everything when it occupies an equal space is at rest, and if that which is in locomotion is always occupying such a space at any moment, the flying arrow is therefore motionless. This is false, for time is not composed of indivisible moments any more than any other magnitude is composed of indivisibles. [4]

Aristotle, Physics VI:9, 239b5

In reference to Zeno's paradox of the arrow in flight, Alfred North Whitehead writes that "an infinite number of acts of becoming may take place in a finite time if each subsequent act is smaller in a convergent series": [5]

The argument, so far as it is valid, elicits a contradiction from the two premises: (i) that in a becoming something (res vera) becomes, and (ii) that every act of becoming is divisible into earlier and later sections which are themselves acts of becoming. Consider, for example, an act of becoming during one second. The act is divisible into two acts, one during the earlier half of the second, the other during the later half of the second. Thus that which becomes during the whole second presupposes that which becomes during the first half-second. Analogously, that which becomes during the first half-second presupposes that which becomes during the first quarter-second, and so on indefinitely. Thus if we consider the process of becoming up to the beginning of the second in question, and ask what then becomes, no answer can be given. For, whatever creature we indicate presupposes an earlier creature which became after the beginning of the second and antecedently to the indicated creature. Therefore there is nothing which becomes, so as to effect a transition into the second in question. [5]

A.N. Whitehead, Process and Reality

In quantum physics

Until the discovery of quantum mechanics, no distinction was made between the question of whether matter is infinitely divisible and the question of whether matter can be cut into smaller parts ad infinitum.

As a result, the Greek word átomos (ἄτομος), which literally means "uncuttable", is usually translated as "indivisible". Whereas the modern atom is indeed divisible, it actually is uncuttable: there is no partition of space such that its parts correspond to material parts of the atom. In other words, the quantum-mechanical description of matter no longer conforms to the cookie cutter paradigm. [6] This casts fresh light on the ancient conundrum of the divisibility of matter. The multiplicity of a material objectthe number of its partsdepends on the existence, not of delimiting surfaces, but of internal spatial relations (relative positions between parts), and these lack determinate values. According to the Standard Model of particle physics, the particles that make up an atom quarks and electrons are point particles: they do not take up space. What makes an atom nevertheless take up space is not any spatially extended "stuff" that "occupies space", and that might be cut into smaller and smaller pieces, but the indeterminacy of its internal spatial relations.

Physical space is often regarded as infinitely divisible: it is thought that any region in space, no matter how small, could be further split. Time is similarly considered as infinitely divisible.

However, according to the best currently accepted theory in physics, The Standard Model, there is a distance (called the Planck length, 1.616229(38)×10−35 metres, named after one of the fathers of Quantum Theory, Max Planck) and therefore a time interval (the amount of time which light takes to traverse that distance in a vacuum, 5.39116(13) × 1044 seconds, known as the Planck time) at which the Standard Model is expected to break down – effectively making this the smallest physical scale about which meaningful statements can be currently made. To predict the physical behaviour of space-time and fundamental particles at smaller distances requires a new theory of Quantum Gravity, which unifies the hitherto incompatible theories of Quantum Mechanics and General Relativity. [ citation needed ]

In economics

One dollar, or one euro, is divided into 100 cents; one can only pay in increments of a cent. It is quite commonplace for prices of some commodities such as gasoline to be in increments of a tenth of a cent per gallon or per litre. If gasoline costs $3.979 per gallon and one buys 10 gallons, then the "extra" 9/10 of a cent comes to ten times that: an "extra" 9 cents, so the cent in that case gets paid. Money is infinitely divisible in the sense that it is based upon the real number system. However, modern day coins are not divisible (in the past some coins were weighed with each transaction, and were considered divisible with no particular limit in mind). There is a point of precision in each transaction that is useless because such small amounts of money are insignificant to humans. The more the price is multiplied the more the precision could matter. For example, when buying a million shares of stock, the buyer and seller might be interested in a tenth of a cent price difference, but it's only a choice. Everything else in business measurement and choice is similarly divisible to the degree that the parties are interested. For example, financial reports may be reported annually, quarterly, or monthly. Some business managers run cash-flow reports more than once per day.

Although time may be infinitely divisible, data on securities prices are reported at discrete times. For example, if one looks at records of stock prices in the 1920s, one may find the prices at the end of each day, but perhaps not at three-hundredths of a second after 12:47 PM. A new method, however, theoretically, could report at double the rate, which would not prevent further increases of velocity of reporting. Perhaps paradoxically, technical mathematics applied to financial markets is often simpler if infinitely divisible time is used as an approximation. Even in those cases, a precision is chosen with which to work, and measurements are rounded to that approximation. In terms of human interaction, money and time are divisible, but only to the point where further division is not of value, which point cannot be determined exactly.

In order theory

To say that the field of rational numbers is infinitely divisible (i.e. order theoretically dense) means that between any two rational numbers there is another rational number. By contrast, the ring of integers is not infinitely divisible.

Infinite divisibility does not imply gaplessness: the rationals do not enjoy the least upper bound property. That means that if one were to partition the rationals into two non-empty sets A and B where A contains all rationals less than some irrational number ( π , say) and B all rationals greater than it, then A has no largest member and B has no smallest member. The field of real numbers, by contrast, is both infinitely divisible and gapless. Any linearly ordered set that is infinitely divisible and gapless, and has more than one member, is uncountably infinite. For a proof, see Cantor's first uncountability proof. Infinite divisibility alone implies infiniteness but not uncountability, as the rational numbers exemplify.

In probability distributions

To say that a probability distribution F on the real line is infinitely divisible means that if X is any random variable whose distribution is F, then for every positive integer n there exist n independent identically distributed random variables X1, ..., Xn whose sum is equal in distribution to X (those n other random variables do not usually have the same probability distribution as X).

The Poisson distribution, the stuttering Poisson distribution,[ citation needed ] the negative binomial distribution, and the Gamma distribution are examples of infinitely divisible distributions — as are the normal distribution, Cauchy distribution and all other members of the stable distribution family. The skew-normal distribution is an example of a non-infinitely divisible distribution. (See Domínguez-Molina and Rocha-Arteaga (2007).)

Every infinitely divisible probability distribution corresponds in a natural way to a Lévy process, i.e., a stochastic process { Xt : t ≥ 0 } with stationary independent increments (stationary means that for s < t, the probability distribution of XtXs depends only on ts; independent increments means that that difference is independent of the corresponding difference on any interval not overlapping with [s, t], and similarly for any finite number of intervals).

This concept of infinite divisibility of probability distributions was introduced in 1929 by Bruno de Finetti.

See also

Related Research Articles

<span class="mw-page-title-main">Atomic theory</span> Model for understanding elemental particles

Atomic theory is the scientific theory that matter is composed of particles called atoms. The concept that matter is composed of discrete particles is an ancient idea, but gained scientific credence in the 18th and 19th centuries when scientists found it could explain the behaviors of gases and how chemical elements reacted with each other. By the end of the 19th century, atomic theory had gained widespread acceptance in the scientific community.

<span class="mw-page-title-main">Quantum mechanics</span> Description of physical properties at the atomic and subatomic scale

Quantum mechanics is a fundamental theory in physics that describes the behavior of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.

<span class="mw-page-title-main">Quantum electrodynamics</span> Quantum field theory of electromagnetism

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.

In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles.

Zeno's paradoxes are a set of philosophical problems devised by the Eleatic Greek philosopher Zeno of Elea.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

<span class="mw-page-title-main">Quantum superposition</span> Principle of quantum mechanics

Quantum superposition is a fundamental principle of quantum mechanics. In classical mechanics, things like position or momentum are always well-defined. It may not be known what they are at any given time, but that is an issue of understanding and not an issue of the physical system. A quantum system interacts in ways that can be explained with superposition of different discrete states. Measurements of quantum systems give a statistical result corresponding to any one of the possible states appearing at random.

In philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Philosophy of physics can be broadly divided into three areas:

<span class="mw-page-title-main">Zeno of Elea</span> Greek philosopher (c. 495 – c. 430 BC)

Zeno of Elea was a pre-Socratic Greek philosopher. He was a student of Parmenides and one of the Eleatics. Born in Elea, Zeno defended his instructor's belief in monism, the idea that only one single entity exists that makes up all of reality. He rejected the existence of space, time, and motion. To disprove these concepts, he developed a series of paradoxes to demonstrate why these are impossible. Though his original writings are lost, subsequent descriptions by Plato, Aristotle, Diogenes Laertius, and Simplicius of Cilicia have allowed study of his ideas.

<span class="mw-page-title-main">Wave function</span> Mathematical description of the quantum state of a system

In quantum physics, a wave function, is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are composed of complex numbers. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

Indeterminism is the idea that events are not caused, or are not caused deterministically.

<span class="mw-page-title-main">Probability amplitude</span> Complex number whose squared absolute value is a probability

In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity represents a probability density.

<span class="mw-page-title-main">Ludwig Boltzmann</span> Austrian physicist and philosopher (1844–1906)

Ludwig Eduard Boltzmann was an Austrian physicist and philosopher. His greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of thermodynamics. In 1877 he provided the current definition of entropy, , where Ω is the number of microstates whose energy equals the system's energy, interpreted as a measure of statistical disorder of a system. Max Planck named the constant kB the Boltzmann constant.

<span class="mw-page-title-main">Quantum Zeno effect</span> Quantum measurement phenomenon

The quantum Zeno effect is a feature of quantum-mechanical systems allowing a particle's time evolution to be slowed down by measuring it frequently enough with respect to some chosen measurement setting.

The deductive-nomological model of scientific explanation, also known as Hempel's model, the Hempel–Oppenheim model, the Popper–Hempel model, or the covering law model, is a formal view of scientifically answering questions asking, "Why...?". The DN model poses scientific explanation as a deductive structure, one where truth of its premises entails truth of its conclusion, hinged on accurate prediction or postdiction of the phenomenon to be explained.

Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.

Asım Orhan Barut was a Turkish-American theoretical physicist.

Atomism is a natural philosophy proposing that the physical universe is composed of fundamental indivisible components known as atoms.

<span class="mw-page-title-main">History of subatomic physics</span>

The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.

Minima naturalia were theorized by Aristotle as the smallest parts into which a homogeneous natural substance could be divided and still retain its essential character. In this context, "nature" means formal nature. Thus, "natural minimum" may be taken to mean "formal minimum": the minimum amount of matter necessary to instantiate a certain form.

References

  1. (PDF) https://ncert.nic.in/ncerts/l/iesc103.pdf.{{cite book}}: Missing or empty |title= (help)
  2. Education, Pearson (2016). The Science Springboard 9th. ISBN   9789332585164.
  3. Physics VI.I-III (231a21-234b10)
  4. Aristotle. "Physics". The Internet Classics Archive.
  5. 1 2 Ross, S.D. (1983). Perspective in Whitehead's Metaphysics . Suny Series in Systematic Philosophy. State University of New York Press. pp.  182–183. ISBN   978-0-87395-658-1. LCCN   82008332.
  6. Ulrich Mohrhoff (2000). "Quantum Mechanics and the Cookie Cutter Paradigm". arXiv: quant-ph/0009001v2 .