Intersection number

Last updated

In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem.

Contents

The intersection number is obvious in certain cases, such as the intersection of the x- and y-axes in a plane, which should be one. The complexity enters when calculating intersections at points of tangency, and intersections which are not just points, but have higher dimension. For example, if a plane is tangent to a surface along a line, the intersection number along the line should be at least two. These questions are discussed systematically in intersection theory.

Definition for Riemann surfaces

Let X be a Riemann surface. Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function ), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:

, for every closed (1-)differential on X,

where is the wedge product of differentials, and is the Hodge star. Then the intersection number of two closed curves, a and b, on X is defined as

.

The have an intuitive definition as follows. They are a sort of dirac delta along the curve c, accomplished by taking the differential of a unit step function that drops from 1 to 0 across c. More formally, we begin by defining for a simple closed curve c on X, a function fc by letting be a small strip around c in the shape of an annulus. Name the left and right parts of as and . Then take a smaller sub-strip around c, , with left and right parts and . Then define fc by

.

The definition is then expanded to arbitrary closed curves. Every closed curve c on X is homologous to for some simple closed curves ci, that is,

, for every differential .

Define the by

.

Definition for algebraic varieties

The usual constructive definition in the case of algebraic varieties proceeds in steps. The definition given below is for the intersection number of divisors on a nonsingular variety X.

1. The only intersection number that can be calculated directly from the definition is the intersection of hypersurfaces (subvarieties of X of codimension one) that are in general position at x. Specifically, assume we have a nonsingular variety X, and n hypersurfaces Z1, ..., Zn which have local equations f1, ..., fn near x for polynomials fi(t1, ..., tn), such that the following hold:

Then the intersection number at the point x (called the intersection multiplicity at x) is

,

where is the local ring of X at x, and the dimension is dimension as a k-vector space. It can be calculated as the localization , where is the maximal ideal of polynomials vanishing at x, and U is an open affine set containing x and containing none of the singularities of the fi.

2. The intersection number of hypersurfaces in general position is then defined as the sum of the intersection numbers at each point of intersection.

3. Extend the definition to effective divisors by linearity, i.e.,

and .

4. Extend the definition to arbitrary divisors in general position by noticing every divisor has a unique expression as D = PN for some effective divisors P and N. So let Di = PiNi, and use rules of the form

to transform the intersection.

5. The intersection number of arbitrary divisors is then defined using a "Chow's moving lemma" that guarantees we can find linearly equivalent divisors that are in general position, which we can then intersect.

Note that the definition of the intersection number does not depend on the order in which the divisors appear in the computation of this number.

Serre's Tor formula

Let V and W be two subvarieties of a nonsingular projective variety X such that dim(V) + dim(W) = dim(X). Then we expect the intersection VW to be a finite set of points. If we try to count them, two kinds of problems may arise. First, even if the expected dimension of VW is zero, the actual intersection may be of a large dimension: for example the self-intersection number of a projective line in a projective plane. The second potential problem is that even if the intersection is zero-dimensional, it may be non-transverse, for example, if V is a plane curve and W is one of its tangent lines.

The first problem requires the machinery of intersection theory, discussed above in detail, which replaces V and W by more convenient subvarieties using the moving lemma. On the other hand, the second problem can be solved directly, without moving V or W. In 1965 Jean-Pierre Serre described how to find the multiplicity of each intersection point by methods of commutative algebra and homological algebra. [1] This connection between a geometric notion of intersection and a homological notion of a derived tensor product has been influential and led in particular to several homological conjectures in commutative algebra.

Serre's Tor formula states: let X be a regular variety, V and W two subvarieties of complementary dimension such that VW is zero-dimensional. For any point xVW, let A be the local ring of x. The structure sheaves of V and W at x correspond to ideals I, JA. Then the multiplicity of VW at the point x is

where length is the length of a module over a local ring, and Tor is the Tor functor. When V and W can be moved into a transverse position, this homological formula produces the expected answer. So, for instance, if V and W meet transversely at x, the multiplicity is 1. If V is a tangent line at a point x to a parabola W in a plane at a point x, then the multiplicity at x is 2.

If both V and W are locally cut out by regular sequences, for example if they are nonsingular, then in the formula above all higher Tor's vanish, hence the multiplicity is positive. The positivity in the arbitrary case is one of Serre's multiplicity conjectures.

Further definitions

The definition can be vastly generalized, for example to intersections along subvarieties instead of just at points, or to arbitrary complete varieties.

In algebraic topology, the intersection number appears as the Poincaré dual of the cup product. Specifically, if two manifolds, X and Y, intersect transversely in a manifold M, the homology class of the intersection is the Poincaré dual of the cup product of the Poincaré duals of X and Y.

Snapper–Kleiman definition of intersection number

There is an approach to intersection number, introduced by Snapper in 1959-60 and developed later by Cartier and Kleiman, that defines an intersection number as an Euler characteristic.

Let X be a scheme over a scheme S, Pic(X) the Picard group of X and G the Grothendieck group of the category of coherent sheaves on X whose support is proper over an Artinian subscheme of S.

For each L in Pic(X), define the endomorphism c1(L) of G (called the first Chern class of L) by

It is additive on G since tensoring with a line bundle is exact. One also has:

The intersection number

of line bundles Li's is then defined by:

where χ denotes the Euler characteristic. Alternatively, one has by induction:

Each time F is fixed, is a symmetric functional in Li's.

If Li = OX(Di) for some Cartier divisors Di's, then we will write for the intersection number.

Let be a morphism of S-schemes, line bundles on X and F in G with . Then

. [2]

Intersection multiplicities for plane curves

There is a unique function assigning to each triplet consisting of a pair of projective curves, and , in and a point , a number called the intersection multiplicity of and at that satisfies the following properties:

  1. if and only if and have a common factor that is zero at
  2. if and only if one of or is non-zero (i.e. the point is off one of the curves)
  3. where
  4. for any

Although these properties completely characterize intersection multiplicity, in practice it is realised in several different ways.

One realization of intersection multiplicity is through the dimension of a certain quotient space of the power series ring . By making a change of variables if necessary, we may assume that . Let and be the polynomials defining the algebraic curves we are interested in. If the original equations are given in homogeneous form, these can be obtained by setting . Let denote the ideal of generated by and . The intersection multiplicity is the dimension of as a vector space over .

Another realization of intersection multiplicity comes from the resultant of the two polynomials and . In coordinates where , the curves have no other intersections with , and the degree of with respect to is equal to the total degree of , can be defined as the highest power of that divides the resultant of and (with and seen as polynomials over ).

Intersection multiplicity can also be realised as the number of distinct intersections that exist if the curves are perturbed slightly. More specifically, if and define curves which intersect only once in the closure of an open set , then for a dense set of , and are smooth and intersect transversally (i.e. have different tangent lines) at exactly some number points in . We say then that .

Example

Consider the intersection of the x-axis with the parabola

Then

and

so

Thus, the intersection degree is two; it is an ordinary tangency.

Self-intersections

Some of the most interesting intersection numbers to compute are self-intersection numbers. This means that a divisor is moved to another equivalent divisor in general position with respect to the first, and the two are intersected. In this way, self-intersection numbers can become well-defined, and even negative.

Applications

The intersection number is partly motivated by the desire to define intersection to satisfy Bézout's theorem.

The intersection number arises in the study of fixed points, which can be cleverly defined as intersections of function graphs with a diagonals. Calculating the intersection numbers at the fixed points counts the fixed points with multiplicity, and leads to the Lefschetz fixed-point theorem in quantitative form.

Notes

  1. Serre, Jean-Pierre (1965). Algèbre locale, multiplicités. Lecture Notes in Mathematics. Vol. 11. Springer-Verlag. pp. x+160.
  2. Kollár 1996 , Ch VI. Proposition 2.11

Related Research Articles

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In contexts including complex manifolds and algebraic geometry, a logarithmic differential form is a meromorphic differential form with poles of a certain kind. The concept was introduced by Deligne.

<span class="mw-page-title-main">Linear system of divisors</span>

In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family.

In differential geometry, a Lie-algebra-valued form is a differential form with values in a Lie algebra. Such forms have important applications in the theory of connections on a principal bundle as well as in the theory of Cartan connections.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.

In mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms.

In mathematics, in particular in algebraic topology, the Hopf invariant is a homotopy invariant of certain maps between n-spheres.

In mathematics, a Witt vector is an infinite sequence of elements of a commutative ring. Ernst Witt showed how to put a ring structure on the set of Witt vectors, in such a way that the ring of Witt vectors over the finite field of order is the ring of -adic integers. They have a highly non-intuitive structure upon first glance because their additive and multiplicative structure depends on an infinite set of recursive formulas which do not behave like addition and multiplication formulas for standard p-adic integers. The main idea behind Witt vectors is instead of using the standard -adic expansion

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

In mathematics, the cotangent complex is a common generalisation of the cotangent sheaf, normal bundle and virtual tangent bundle of a map of geometric spaces such as manifolds or schemes. If is a morphism of geometric or algebraic objects, the corresponding cotangent complex can be thought of as a universal "linearization" of it, which serves to control the deformation theory of . It is constructed as an object in a certain derived category of sheaves on using the methods of homotopical algebra.

In mathematics, the Segre class is a characteristic class used in the study of cones, a generalization of vector bundles. For vector bundles the total Segre class is inverse to the total Chern class, and thus provides equivalent information; the advantage of the Segre class is that it generalizes to more general cones, while the Chern class does not. The Segre class was introduced in the non-singular case by Segre (1953).. In the modern treatment of intersection theory in algebraic geometry, as developed e.g. in the definitive book of Fulton (1998), Segre classes play a fundamental role.

This is a glossary of algebraic geometry.

In algebraic geometry, the dimension of a scheme is a generalization of a dimension of an algebraic variety. Scheme theory emphasizes the relative point of view and, accordingly, the relative dimension of a morphism of schemes is also important.

In algebraic geometry, a mixed Hodge structure is an algebraic structure containing information about the cohomology of general algebraic varieties. It is a generalization of a Hodge structure, which is used to study smooth projective varieties.

References