Iodine clock reaction

Last updated
Iodine clock reaction (persulfate variation)

The iodine clock reaction is a classical chemical clock demonstration experiment to display chemical kinetics in action; it was discovered by Hans Heinrich Landolt in 1886. [1] The iodine clock reaction exists in several variations, which each involve iodine species (iodide ion, free iodine, or iodate ion) and redox reagents in the presence of starch. Two colourless solutions are mixed and at first there is no visible reaction. After a short time delay, the liquid suddenly turns to a shade of dark blue due to the formation of a triiodide–starch complex. In some variations, the solution will repeatedly cycle from colorless to blue and back to colorless, until the reagents are depleted.

Contents

Hydrogen peroxide variation

This method starts with a solution of hydrogen peroxide and sulfuric acid. To this a solution containing potassium iodide, sodium thiosulfate, and starch is added. There are two reactions occurring simultaneously in the solution.

In the first, slow reaction, iodine is produced:

H2O2 + 2 I + 2 H+I2 + 2 H2O

In the second, fast reaction, iodine is reconverted to two iodide ions by the thiosulfate:

2 S2O2−3 + I2S4O2−6 + 2 I

After some time the solution always changes color to a very dark blue, almost black.

When the solutions are mixed, the second reaction causes the iodine to be consumed much faster than it is generated, and only a small amount of iodine is present in the dynamic equilibrium. Once the thiosulfate ion has been exhausted, this reaction stops and the blue colour caused by the iodine starch complex appears.

Anything that accelerates the first reaction will shorten the time until the solution changes color. Decreasing the pH (increasing H+
concentration), or increasing the concentration of iodide or hydrogen peroxide will shorten the time. Adding more thiosulfate will have the opposite effect; it will take longer for the blue colour to appear.

Aside from using sodium thiosulfate as a substrate, cysteine can also be used. [2]

Iodide from potassium iodide is converted to iodine in the first reaction:

2 I + 2 H+ + H2O2 → I2 + 2 H2O

The iodine produced in the first reaction is reduced back to iodide by the reducing agent, cysteine. At the same time, cysteine is oxidized into cystine.

2 C3H7NO2S + I2 → C6H12N2O4S2 + 2 I + 2 H+

Similar to thiosulfate case, when cysteine is exhausted, the blue color appears.

Iodate variation

An alternative protocol uses a solution of iodate ion (for instance potassium iodate) to which an acidified solution (again with sulfuric acid) of sodium bisulfite is added. [3]

In this protocol, iodide ion is generated by the following slow reaction between the iodate and bisulfite:

IO3 + 3 HSO3I + 3 HSO4

This first step is the rate determining step. Next, the iodate in excess will oxidize the iodide generated above to form iodine:

IO3 + 5 I + 6 H+ → 3 I2 + 3 H2O

However, the iodine is reduced immediately back to iodide by the bisulfite:

I2 + HSO3 + H2O → 2 I + HSO4 + 2 H+

When the bisulfite is fully consumed, the iodine will survive (i.e., no reduction by the bisulfite) to form the dark blue complex with starch.

Persulfate variation

This clock reaction uses sodium, potassium or ammonium persulfate to oxidize iodide ions to iodine. Sodium thiosulfate is used to reduce iodine back to iodide before the iodine can complex with the starch to form the characteristic blue-black color.

Iodine is generated:

2 I + S2O2−8I2 + 2 SO2−4

And is then removed:

I2 + 2 S2O2−3 → 2 I + S4O2−6

Once all the thiosulfate is consumed the iodine may form a complex with the starch. Potassium persulfate is less soluble (cfr. Salters website) while ammonium persulfate has a higher solubility and is used instead in the reaction described in examples from Oxford University. [4]

Chlorate variation

An experimental iodine clock sequence has also been established for a system consisting of iodine potassium-iodide, sodium chlorate and perchloric acid that takes place through the following reactions. [5]

Triiodide is present in equilibrium with iodide anion and molecular iodine:

I3I2 + I

Chlorate ion oxidizes iodide ion to hypoiodous acid and chlorous acid in the slow and rate-determining step:

ClO3 + I + 2 H+HOI + HClO2

Chlorate consumption is accelerated by reaction of hypoiodous acid to iodous acid and more chlorous acid:

ClO3 + HOI + H+HIO2 + HClO2

More autocatalysis when newly generated iodous acid also converts chlorate in the fastest reaction step:

ClO3 + HIO2IO3 + HClO2

In this clock the induction period is the time it takes for the autocatalytic process to start after which the concentration of free iodine falls rapidly as observed by UV–visible spectroscopy.

See also

Related Research Articles

<span class="mw-page-title-main">Chemistry of ascorbic acid</span> Chemical compound

Ascorbic acid is an organic compound with formula C
6
H
8
O
6
, originally called hexuronic acid. It is a white solid, but impure samples can appear yellowish. It dissolves freely in water to give mildly acidic solutions. It is a mild reducing agent.

<span class="mw-page-title-main">Iodine</span> Chemical element, symbol I and atomic number 53

Iodine is a chemical element; it has symbol I and atomic number 53. The heaviest of the stable halogens, it exists at standard conditions as a semi-lustrous, non-metallic solid that melts to form a deep violet liquid at 114 °C (237 °F), and boils to a violet gas at 184 °C (363 °F). The element was discovered by the French chemist Bernard Courtois in 1811 and was named two years later by Joseph Louis Gay-Lussac, after the Ancient Greek Ιώδης 'violet-coloured'.

The Winkler test is used to determine the concentration of dissolved oxygen in water samples. Dissolved oxygen (D.O.) is widely used in water quality studies and routine operation of water reclamation facilities to analyze its level of oxygen saturation.

<span class="mw-page-title-main">Potassium perchlorate</span> Chemical compound

Potassium perchlorate is the inorganic salt with the chemical formula KClO4. Like other perchlorates, this salt is a strong oxidizer although it usually reacts very slowly with organic substances. This, usually obtained as a colorless, crystalline solid, is a common oxidizer used in fireworks, ammunition percussion caps, explosive primers, and is used variously in propellants, flash compositions, stars, and sparklers. It has been used as a solid rocket propellant, although in that application it has mostly been replaced by the higher performance ammonium perchlorate.

<span class="mw-page-title-main">Sodium thiosulfate</span> Chemical compound

Sodium thiosulfate is an inorganic compound with the formula Na2S2O3·(H2O)(x) .Typically it is available as the white or colorless pentahydrate, It is a white solid that dissolves well in water. The compound is a reducing agent and a ligand, and these properties underpin its applications.

In chemistry, the iodine value is the mass of iodine in grams that is consumed by 100 grams of a chemical substance. Iodine numbers are often used to determine the degree of unsaturation in fats, oils and waxes. In fatty acids, unsaturation occurs mainly as double bonds which are very reactive towards halogens, the iodine in this case. Thus, the higher the iodine value, the more unsaturations are present in the fat. It can be seen from the table that coconut oil is very saturated, which means it is good for making soap. On the other hand, linseed oil is highly unsaturated, which makes it a drying oil, well suited for making oil paints.

<span class="mw-page-title-main">Iodate</span> Polyatomic anion (IO3) with charge -1

An iodate is the polyatomic anion with the formula IO−3. It is the most common form of iodine in nature, as it comprises the major iodine-containing ores. Iodate salts are often colorless. They are the salts of iodic acid.

<span class="mw-page-title-main">Iodic acid</span> Chemical compound (HIO3)

Iodic acid is a white water-soluble solid with the chemical formula HIO3. Its robustness contrasts with the instability of chloric acid and bromic acid. Iodic acid features iodine in the oxidation state +5 and is one of the most stable oxo-acids of the halogens. When heated, samples dehydrate to give iodine pentoxide. On further heating, the iodine pentoxide further decomposes, giving a mix of iodine, oxygen and lower oxides of iodine.

Iodometry, known as iodometric titration, is a method of volumetric chemical analysis, a redox titration where the appearance or disappearance of elementary iodine indicates the end point.

<span class="mw-page-title-main">Bisulfite</span> Chemical compound or ion

The bisulfite ion (IUPAC-recommended nomenclature: hydrogensulfite) is the ion HSO
3
. Salts containing the HSO
3
ion are also known as "sulfite lyes". Sodium bisulfite is used interchangeably with sodium metabisulfite (Na2S2O5). Sodium metabisulfite dissolves in water to give a solution of Na+HSO
3
.

The Old Nassau reaction or Halloween reaction is a chemical clock reaction in which a clear solution turns orange and then black. This reaction was discovered by two undergraduate students at Princeton University researching the inhibition of the iodine clock reaction (or Landolt reaction) by Hg2+, resulting in the formation of orange HgI2. Orange and black are the school colors of Princeton University, and "Old Nassau" is a nickname for Princeton, named for its historic administration building, Nassau Hall.

<span class="mw-page-title-main">Briggs–Rauscher reaction</span> Oscillating chemical reaction

The Briggs–Rauscher oscillating reaction is one of a small number of known oscillating chemical reactions. It is especially well suited for demonstration purposes because of its visually striking colour changes: the freshly prepared colourless solution slowly turns an amber colour, then suddenly changes to a very dark blue. This slowly fades to colourless and the process repeats, about ten times in the most popular formulation, before ending as a dark blue liquid smelling strongly of iodine.

<span class="mw-page-title-main">Thiosulfate</span> Polyatomic ion (S2O3, charge –2)

Thiosulfate is an oxyanion of sulfur with the chemical formula S2O2−3. Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, e.g. sodium thiosulfate Na2S2O3. Thiosulfate also refers to the esters of thiosulfuric acid. The prefix thio- indicates that the thiosulfate is a sulfate with one oxygen replaced by sulfur. Thiosulfate is tetrahedral at the central S atom. Thiosulfate salts occur naturally. Thiosulfate ion has C3v symmetry, and is produced by certain biochemical processes. It rapidly dechlorinates water and is notable for its use to halt bleaching in the paper-making industry. Thiosulfate salts are mainly used in dying in textiles and the bleaching of natural substances.

<span class="mw-page-title-main">Potassium iodate</span> Chemical compound

Potassium iodate (KIO3) is an ionic inorganic compound with the formula KIO3. It is a white salt that is soluble in water.

<span class="mw-page-title-main">Sodium iodate</span> Chemical compound

Sodium iodate (NaIO3) is the sodium salt of iodic acid. Sodium iodate is an oxidizing agent. It has several uses.

<span class="mw-page-title-main">Iodine monochloride</span> Chemical compound

Iodine monochloride is an interhalogen compound with the formula ICl. It is a red-brown chemical compound that melts near room temperature. Because of the difference in the electronegativity of iodine and chlorine, this molecule is highly polar and behaves as a source of I+. Discovered in 1814 by Gay-Lussac, iodine monochloride is the first interhalogen compound discovered.

Iodine compounds are compounds containing the element iodine. Iodine can form compounds using multiple oxidation states. Iodine is quite reactive, but it is much less reactive than the other halogens. For example, while chlorine gas will halogenate carbon monoxide, nitric oxide, and sulfur dioxide, iodine will not do so. Furthermore, iodination of metals tends to result in lower oxidation states than chlorination or bromination; for example, rhenium metal reacts with chlorine to form rhenium hexachloride, but with bromine it forms only rhenium pentabromide and iodine can achieve only rhenium tetraiodide. By the same token, however, since iodine has the lowest ionisation energy among the halogens and is the most easily oxidised of them, it has a more significant cationic chemistry and its higher oxidation states are rather more stable than those of bromine and chlorine, for example in iodine heptafluoride.

<span class="mw-page-title-main">Disulfite</span> Chemical compound

A disulfite, commonly known as metabisulfite or pyrosulfite, is a chemical compound containing the ion S
2
O2−
5
. It is a colorless dianion that is primarily marketed in the form of sodium metabisulfite or potassium metabisulfite. When dissolved in water, these salts release the hydrogensulfite HSO
3
anion. These salts act equivalently to sodium hydrogensulfite or potassium hydrogensulfite.

<span class="mw-page-title-main">Polythionates</span>

Polythionates are oxyanions with the formula O3S−Sn−SO−3 (n ≥ 0). They occur naturally and are the products of redox reactions of thiosulfate. Polythionates are readily isolable, unlike the parent polythionic acids.

<span class="mw-page-title-main">Astatine compounds</span>

Astatine compounds are compounds that contain the element astatine (At). As this element is very radioactive, few compounds have been studied. Less reactive than iodine, astatine is the least reactive of the halogens. Its compounds have been synthesized in nano-scale amounts and studied as intensively as possible before their radioactive disintegration. The reactions involved have been typically tested with dilute solutions of astatine mixed with larger amounts of iodine. Acting as a carrier, the iodine ensures there is sufficient material for laboratory techniques to work. Like iodine, astatine has been shown to adopt odd-numbered oxidation states ranging from −1 to +7.

References

  1. See:
    • Landolt, H. (1886). "Ueber die Zeitdauer der Reaction zwischen Jodsäure und schwefliger Säure" [On the duration of the reaction between iodic acid and sulfurous acid]. Berichte der Deutschen Chemischen Gesellschaft (in German). 19 (1): 1317–1365. doi:10.1002/cber.188601901293.
    • Landolt, H. (1887). "Ueber die Zeitdauer der Reaction zwischen Jodsäure und schwefliger Säure [Part 2]" [On the duration of the reaction between iodic acid and sulfurous acid]. Berichte der Deutschen Chemischen Gesellschaft (in German). 20 (1): 745–760. doi:10.1002/cber.188702001173.
  2. Limpanuparb, T.; Ruchawapol, C.; Sathainthammanee, D. (2019). "Clock Reaction Revisited: Catalyzed Redox Substrate-Depletive Reactions". Journal of Chemical Education. 96 (4): 812–818. Bibcode:2019JChEd..96..812L. doi:10.1021/acs.jchemed.8b00547. S2CID   104370691.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. "Experiment 6: THE RATE LAWS OF AN IODINE CLOCK REACTION" (PDF). Archived from the original (PDF) on 2018-05-17. Retrieved 2018-04-30.
  4. Hugh Cartwright (2006). "Kinetics of the Persulfate-iodide Clock Reaction" (PDF). 2nd/3rd Year Physical Chemistry Practical Course. Oxford University. Retrieved 25 March 2018.
  5. André P. Oliveira and Roberto B. Faria (2005). "The chlorate-iodine clock reaction". J. Am. Chem. Soc. 127 (51): 18022–18023. doi:10.1021/ja0570537. PMID   16366551.