Iodophenpropit

Last updated
Iodophenpropit
Iodophenpropit.svg
Names
IUPAC name
3-(1H-imidazol-5-yl)propyl N'-[2-(4-iodophenyl)ethyl]imidothiocarbamate
Other names
1-[3-(3H-imidazol-4-yl)propylthio]-N'-[2-(4-iodophenyl)ethyl]formamidine
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
MeSH Iodophenpropit
PubChem CID
UNII
  • C1=CC(=CC=C1CCN=C(N)SCCCC2=CN=CN2)I
Properties
C15H19IN4S
Molar mass 414.30763 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Iodophenpropit is a histamine antagonist which binds selectively to the H3 subtype. Its 125I radiolabelled form has been used for mapping the distribution of H3 receptors in animal studies. [1] [2]

Related Research Articles

<span class="mw-page-title-main">Chlorphenamine</span> Antihistamine used to treat allergies

Chlorphenamine, also known as chlorpheniramine, is an antihistamine used to treat the symptoms of allergic conditions such as allergic rhinitis. It is taken orally. The medication takes effect within two hours and lasts for about 4-6 hours.

The histamine receptors are a class of G protein–coupled receptors which bind histamine as their primary endogenous ligand.

Histamine H<sub>3</sub> receptor Mammalian protein found in Homo sapiens

Histamine H3 receptors are expressed in the central nervous system and to a lesser extent the peripheral nervous system, where they act as autoreceptors in presynaptic histaminergic neurons and control histamine turnover by feedback inhibition of histamine synthesis and release. The H3 receptor has also been shown to presynaptically inhibit the release of a number of other neurotransmitters (i.e. it acts as an inhibitory heteroreceptor) including, but probably not limited to dopamine, GABA, acetylcholine, noradrenaline, histamine and serotonin.

Histamine H<sub>4</sub> receptor Mammalian protein found in Homo sapiens

The histamine H4 receptor, like the other three histamine receptors, is a member of the G protein-coupled receptor superfamily that in humans is encoded by the HRH4 gene.

Histamine H<sub>1</sub> receptor Histamine receptor

The H1 receptor is a histamine receptor belonging to the family of rhodopsin-like G-protein-coupled receptors. This receptor is activated by the biogenic amine histamine. It is expressed in smooth muscles, on vascular endothelial cells, in the heart, and in the central nervous system. The H1 receptor is linked to an intracellular G-protein (Gq) that activates phospholipase C and the inositol triphosphate (IP3) signalling pathway. Antihistamines, which act on this receptor, are used as anti-allergy drugs. The crystal structure of the receptor has been determined (shown on the right/below) and used to discover new histamine H1 receptor ligands in structure-based virtual screening studies.

<span class="mw-page-title-main">ABT-239</span> Chemical compound

ABT-239 is an H3-receptor inverse agonist developed by Abbott. It has stimulant and nootropic effects, and has been investigated as a treatment for ADHD, Alzheimer's disease, and schizophrenia. ABT-239 is more active at the human H3 receptor than comparable agents such as thioperamide, ciproxifan, and cipralisant. It was ultimately dropped from human trials after showing the dangerous cardiac side effect of QT prolongation, but is still widely used in animal research into H3 antagonists / inverse agonists.

<span class="mw-page-title-main">Thioperamide</span> Chemical compound

Thioperamide is a potent HRH4 antagonist and selective HRH3 antagonist capable of crossing the blood–brain barrier. It was used by Jean-Charles Schwartz in his early experiments regarding the H3 receptor. Thioperamide was found to be an antagonist of histamine autoreceptors, which negatively regulate the release of histamine. The drug enhances the activity of histaminergic neurons by blocking autoreceptors, leading to greater release of histamine.

<span class="mw-page-title-main">Cipralisant</span> Chemical compound

Cipralisant (GT-2331, tentative trade name Perceptin) is an extremely potent histamine H3 receptor ligand originally developed by Gliatech. Cipralisant was initially classified as a selective H3 antagonist, but newer research (2005) suggests also agonist properties, i.e., functional selectivity.

<span class="mw-page-title-main">Ciproxifan</span> Chemical compound

Ciproxifan is an extremely potent histamine H3 inverse agonist/antagonist.

<span class="mw-page-title-main">Antihistamine</span> Drug that blocks histamine or histamine agonists

Antihistamines are drugs which treat allergic rhinitis, common cold, influenza, and other allergies. Typically, people take antihistamines as an inexpensive, generic drug that can be bought without a prescription and provides relief from nasal congestion, sneezing, or hives caused by pollen, dust mites, or animal allergy with few side effects. Antihistamines are usually for short-term treatment. Chronic allergies increase the risk of health problems which antihistamines might not treat, including asthma, sinusitis, and lower respiratory tract infection. Consultation of a medical professional is recommended for those who intend to take antihistamines for longer-term use.

<span class="mw-page-title-main">Dimaprit</span> Chemical compound

Dimaprit is a histamine analog working as a selective H2 histamine receptor agonist.

<span class="mw-page-title-main">Clobenpropit</span> Chemical compound

Clobenpropit is a histamine H3 receptor antagonist. It has neuroprotective effects via stimulation of GABA release in brain cells in vitro.

An H3 receptor antagonist is a type of antihistaminic drug used to block the action of histamine at H3 receptors.

<span class="mw-page-title-main">A-349821</span> Chemical compound

A-349,821 is a potent and selective histamine H3 receptor antagonist (or possibly an inverse agonist). It has nootropic effects in animal studies, although there do not appear to be any plans for clinical development at present and it is currently only used in laboratory research.

<span class="mw-page-title-main">Impentamine</span> Chemical compound

Impentamine is a histamine antagonist selective for the H3 subtype.

<span class="mw-page-title-main">VUF-5681</span> Chemical compound

VUF-5681 is a potent and selective histamine antagonist which binds selectively to the H3 subtype. However while VUF-5681 blocks the activity of more potent H3 agonists, recent studies suggest that it may have some weak partial agonist activity when administered by itself.

GSK-189,254 is a potent and selective H3 histamine receptor inverse agonist developed by GlaxoSmithKline. It has subnanomolar affinity for the H3 receptor (Ki = 0.2nM) and selectivity of over 10,000x for H3 over other histamine receptor subtypes. Animal studies have shown it to possess not only stimulant and nootropic effects, but also analgesic action suggesting a role for H3 receptors in pain processing in the spinal cord. GSK-189,254 and several other related drugs are currently being investigated as a treatment for Alzheimer's disease and other forms of dementia, as well as possible use in the treatment of conditions such as narcolepsy, or neuropathic pain which do not respond well to conventional analgesic drugs.

<span class="mw-page-title-main">SB-258585</span> Chemical compound

SB-258585 is a drug which is used in scientific research. It acts as a potent, selective and orally active 5-HT6 receptor antagonist, with a Ki of 8.9nM. It is used in its 125I radiolabelled form to map the distribution of 5-HT6 receptors in the brain.

<span class="mw-page-title-main">Proxyfan</span> Chemical compound

Proxyfan is a histamine H3 receptor ligand which is a "protean agonist", producing different effects ranging from full agonist, to antagonist, to inverse agonist in different tissues, depending on the level of constitutive activity of the histamine H3 receptor. This gives it a complex activity profile in vivo which has proven useful for scientific research.

<span class="mw-page-title-main">SCH-79687</span> Chemical compound

SCH-79687 is a histamine antagonist selective for the H3 subtype.

References

  1. Jansen, FP; Wu, TS; Voss, HP; Steinbusch, HW; Vollinga, RC; Rademaker, B; Bast, A; Timmerman, H (1994). "Characterization of the binding of the first selective radiolabelled histamine H3-receptor antagonist, 125I-iodophenpropit, to rat brain". British Journal of Pharmacology . 113 (2): 355–62. doi:10.1111/j.1476-5381.1994.tb16995.x. PMC   1510107 . PMID   7834183.
  2. Jansen, FP; Mochizuki, T; Maeyama, K; Leurs, R; Timmerman, H (2000). "Characterization of histamine H3 receptors in mouse brain using the H3 antagonist 125Iiodophenpropit". Naunyn-Schmiedeberg's Archives of Pharmacology. 362 (1): 60–7. doi:10.1007/s002100000227. PMID   10935534. S2CID   21293180.