Ion milling machine

Last updated

Ion milling is a specialized physical etching technique that is a crucial step in the preparation of material analysis techniques. After a specimen goes through ion milling, the surface becomes much smoother and more defined, which allows scientists to study the material much easier. The ion mill generates high-energy particles to remove material off the surface of a specimen, similar to how sand and dust particles wear away at rocks in a canyon to create a smooth surface. Relative to other techniques, ion milling creates much less surface damage, [1] which makes it perfect for surface-sensitive analytical techniques. This article discusses the principle, equipment, applications, and significance of ion milling.

Contents

Principles

Ion milling operates on the principles of sputtering and erosion. Sputtering occurs as the high-energy ions bombard the sample surface. Ions collide with the atoms and molecules on the surface and knock off surface atoms. As the high-energy ions are directed onto the material's surface, a collision cascade occurs. Ions bombard the surface of the specimen, and energy is transferred from the ions onto the surface atoms. If the transferred energy surpasses the binding energy of the target atoms, they are dislodged from the surface. Material that juts out has less surface binding energy and is more likely to be ejected through sputtering. [2] As the ion milling process continues, the sample surface is slowly eroded away, resulting in a thin, flat, and damage-free surface. Specific results can be achieved by changing the angle of incidence of ions, the ion energy, and the type of ions used. [3]

Equipment

Ion source

Ion sources are fundamental to ion milling. Their design and operation are crucial to producing accurate results. The most commonly used ion source relies on radiofrequency (RF) ion sources and direct current (DC) electric fields to generate and accelerate ions from a gas, typically a noble gas like argon or xenon. RF fields are used for ionization because they allow for a high degree of control and efficiency. RF ion sources can efficiently produce ions by creating an alternating radiofrequency electric field in a resonant cavity. RF uses a frequency of several megahertz, which works best for most gases used. The RF field causes the gas to repeat cycles of ionization and electron detachment, which creates plasma. [4] The alternating electric field ionizes the gas by ripping off the electrons and leaving the positive ions. The ions are then accelerated away from the plasma using a DC electric field. An extraction electrode with a DC electric field accelerates the ions towards the specimen due to the voltage difference between the electrode and plasma region. [5] The synergy between RF and DC fields is crucial for optimizing the ion source's performance. The precise combination between these fields gives the ion beam the specific characteristics it needs, such as energy and current. [5]

Sample holder

To guarantee that the surface is eroded uniformly, the specimen must be held in place while the ion mill operates. The specimen itself needs to have a surface that is mostly level and clean. Prior to ion milling, the surface should be fairly flat because the process does not remove much material. If the specimen's surface is dirty or has other particles on top of it, the ion mill will operate on the layer on top rather than the actual specimen surface.

Vacuum system

The specimen should be in a high-vacuum environment for optimal milling results. The vacuum makes sure that there are few air particles that could interfere with the ion beam. This way, all the energy in the energy beam can be transferred to the surface with much less energy loss. [6]

Analysis

Analyzing and monitoring the ion milling process is crucial for achieving desired outcomes and ensuring the quality of the results. There are many techniques and instruments that view key parameters during ion milling.

Scanning electron Microscopy (SEM)

SEM is used to analyze the surface morphology of samples after ion milling. SEM imaging is used to assess material removal, surface roughness, and cross-sectional features. [7]

Secondary ion mass spectrometry (SIMS)

After the samples are milled, elemental and isotopic analysis is performed using SIMS . After the primary ions hit the surface, secondary ions and particles are released during the bombardment of the surface. Scientists can gather comprehensive data regarding the material's composition by understanding which ions are utilized for milling and which secondary ions are released. [90]

X-ray photoelectron spectroscopy (XPS)

XPS is utilized to analyze the chemical composition of the surface. X-rays are used to irradiate the sample and measure the energies of the emitted photoelectrons. XPS assesses the surface chemistry and can detect any chemical changes induced by ion milling. This process can tell how much damage ion milling has caused to the surface after ion bombardment. [8]

In-situ monitoring techniques

In-situ monitoring techniques observe the ion milling process in real-time. One type of in-situ monitoring is optical emission spectroscopy (OES). OES monitors the emission of light during ion milling and gives information about the plasma. [9]

Applications

Electron microscopy

Ion milling can be used for thinning specimens until electron transparency in transmission electron microscopy ( TEM ). [3]

Microelectronics

The accurate and damage-free surface ion milling provides makes it perfect for the precise fabrication of semiconductors. Using ion milling for microelectronics can create well-defined features and patterns on semiconductor wafers . [10]

Cross-sectional analysis

Ion milling can be used to create cross-sectional samples for materials. Cross-sectional shows interfaces, layer structures, and defects of the material.

Surface smoothing and polishing

Ion milling is able to take off a few atoms at a time, which allows it to create smooth and polished surfaces on certain materials. Enhancing surface quality is crucial in anything that requires precision, such as optics or semiconductors.

Advantages and limitations

Advantages

Limitations

Conclusion

Ion milling revolutionized the fields of material engineering and mechanical engineering, allowing researchers and scientists to obtain high-quality specimens for advanced material analysis. Its applications in various industries and its role in advancing microelectronics make it an indispensable tool for modern research and development.

Related Research Articles

<span class="mw-page-title-main">Ion implantation</span> Use of ions to cause chemical changes

Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fabrication and in metal finishing, as well as in materials science research. The ions can alter the elemental composition of the target if they stop and remain in the target. Ion implantation also causes chemical and physical changes when the ions impinge on the target at high energy. The crystal structure of the target can be damaged or even destroyed by the energetic collision cascades, and ions of sufficiently high energy can cause nuclear transmutation.

<span class="mw-page-title-main">Scanning electron microscope</span> Electron microscope where a small beam is scanned across a sample

A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition of the sample. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image. In the most common SEM mode, secondary electrons emitted by atoms excited by the electron beam are detected using a secondary electron detector. The number of secondary electrons that can be detected, and thus the signal intensity, depends, among other things, on specimen topography. Some SEMs can achieve resolutions better than 1 nanometer.

<span class="mw-page-title-main">Sputtering</span> Emission of surface atoms through energetic particle bombardment

In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and can be an unwelcome source of wear in precision components. However, the fact that it can be made to act on extremely fine layers of material is utilised in science and industry—there, it is used to perform precise etching, carry out analytical techniques, and deposit thin film layers in the manufacture of optical coatings, semiconductor devices and nanotechnology products. It is a physical vapor deposition technique.

<span class="mw-page-title-main">Auger electron spectroscopy</span> Analytical technique used specifically in the study of surfaces

Auger electron spectroscopy is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials science. It is a form of electron spectroscopy that relies on the Auger effect, based on the analysis of energetic electrons emitted from an excited atom after a series of internal relaxation events. The Auger effect was discovered independently by both Lise Meitner and Pierre Auger in the 1920s. Though the discovery was made by Meitner and initially reported in the journal Zeitschrift für Physik in 1922, Auger is credited with the discovery in most of the scientific community. Until the early 1950s Auger transitions were considered nuisance effects by spectroscopists, not containing much relevant material information, but studied so as to explain anomalies in X-ray spectroscopy data. Since 1953 however, AES has become a practical and straightforward characterization technique for probing chemical and compositional surface environments and has found applications in metallurgy, gas-phase chemistry, and throughout the microelectronics industry.

<span class="mw-page-title-main">Transmission electron microscopy</span> Imaging and diffraction using electrons that pass through samples

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a detector such as a scintillator attached to a charge-coupled device or a direct electron detector.

<span class="mw-page-title-main">Synchrotron light source</span> Particle accelerator designed to produce intense x-ray beams

A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to stimulate the high energy electrons to emit photons.

<span class="mw-page-title-main">Energy-dispersive X-ray spectroscopy</span> Analytical technique used for the elemental analysis or chemical characterization of a sample

Energy-dispersive X-ray spectroscopy, sometimes called energy dispersive X-ray analysis or energy dispersive X-ray microanalysis (EDXMA), is an analytical technique used for the elemental analysis or chemical characterization of a sample. It relies on an interaction of some source of X-ray excitation and a sample. Its characterization capabilities are due in large part to the fundamental principle that each element has a unique atomic structure allowing a unique set of peaks on its electromagnetic emission spectrum. The peak positions are predicted by the Moseley's law with accuracy much better than experimental resolution of a typical EDX instrument.

Photoemission electron microscopy is a type of electron microscopy that utilizes local variations in electron emission to generate image contrast. The excitation is usually produced by ultraviolet light, synchrotron radiation or X-ray sources. PEEM measures the coefficient indirectly by collecting the emitted secondary electrons generated in the electron cascade that follows the creation of the primary core hole in the absorption process. PEEM is a surface sensitive technique because the emitted electrons originate from a shallow layer. In physics, this technique is referred to as PEEM, which goes together naturally with low-energy electron diffraction (LEED), and low-energy electron microscopy (LEEM). In biology, it is called photoelectron microscopy (PEM), which fits with photoelectron spectroscopy (PES), transmission electron microscopy (TEM), and scanning electron microscopy (SEM).

<span class="mw-page-title-main">Glow discharge</span>

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

A microprobe is an instrument that applies a stable and well-focused beam of charged particles to a sample.

<span class="mw-page-title-main">Ion beam</span> Beam of charged atoms (ions)

An ion beam is a type of charged particle beam consisting of ions. Ion beams have many uses in electronics manufacturing and other industries. A variety of ion beam sources exists, some derived from the mercury vapor thrusters developed by NASA in the 1960s. The most common ion beams are of singly-charged ions.

Elastic recoil detection analysis (ERDA), also referred to as forward recoil scattering, is an ion beam analysis technique in materials science to obtain elemental concentration depth profiles in thin films. This technique is known by several different names. These names are listed below. In the technique of ERDA, an energetic ion beam is directed at a sample to be characterized and there is an elastic nuclear interaction between the ions of beam and the atoms of the target sample. Such interactions are commonly of Coulomb nature. Depending on the kinetics of the ions, cross section area, and the loss of energy of the ions in the matter, ERDA helps determine the quantification of the elemental analysis. It also provides information about the depth profile of the sample.

<span class="mw-page-title-main">Focused ion beam</span> Device

Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a scientific instrument that resembles a scanning electron microscope (SEM). However, while the SEM uses a focused beam of electrons to image the sample in the chamber, a FIB setup uses a focused beam of ions instead. FIB can also be incorporated in a system with both electron and ion beam columns, allowing the same feature to be investigated using either of the beams. FIB should not be confused with using a beam of focused ions for direct write lithography. These are generally quite different systems where the material is modified by other mechanisms.

<span class="mw-page-title-main">Characterization (materials science)</span> Study of material structure and properties

Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. The scope of the term often differs; some definitions limit the term's use to techniques which study the microscopic structure and properties of materials, while others use the term to refer to any materials analysis process including macroscopic techniques such as mechanical testing, thermal analysis and density calculation. The scale of the structures observed in materials characterization ranges from angstroms, such as in the imaging of individual atoms and chemical bonds, up to centimeters, such as in the imaging of coarse grain structures in metals.

Gas cluster ion beams (GCIB) is a technology for nano-scale modification of surfaces. It can smooth a wide variety of surface material types to within an angstrom of roughness without subsurface damage. It is also used to chemically alter surfaces through infusion or deposition.

<span class="mw-page-title-main">Sputter deposition</span> Method of thin film application

Sputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is re-emission of the deposited material during the deposition process by ion or atom bombardment. Sputtered atoms ejected from the target have a wide energy distribution, typically up to tens of eV. The sputtered ions can ballistically fly from the target in straight lines and impact energetically on the substrates or vacuum chamber. Alternatively, at higher gas pressures, the ions collide with the gas atoms that act as a moderator and move diffusively, reaching the substrates or vacuum chamber wall and condensing after undergoing a random walk. The entire range from high-energy ballistic impact to low-energy thermalized motion is accessible by changing the background gas pressure. The sputtering gas is often an inert gas such as argon. For efficient momentum transfer, the atomic weight of the sputtering gas should be close to the atomic weight of the target, so for sputtering light elements neon is preferable, while for heavy elements krypton or xenon are used. Reactive gases can also be used to sputter compounds. The compound can be formed on the target surface, in-flight or on the substrate depending on the process parameters. The availability of many parameters that control sputter deposition make it a complex process, but also allow experts a large degree of control over the growth and microstructure of the film.

<span class="mw-page-title-main">Low-energy ion scattering</span>

Low-energy ion scattering spectroscopy (LEIS), sometimes referred to simply as ion scattering spectroscopy (ISS), is a surface-sensitive analytical technique used to characterize the chemical and structural makeup of materials. LEIS involves directing a stream of charged particles known as ions at a surface and making observations of the positions, velocities, and energies of the ions that have interacted with the surface. Data that is thus collected can be used to deduce information about the material such as the relative positions of atoms in a surface lattice and the elemental identity of those atoms. LEIS is closely related to both medium-energy ion scattering (MEIS) and high-energy ion scattering, differing primarily in the energy range of the ion beam used to probe the surface. While much of the information collected using LEIS can be obtained using other surface science techniques, LEIS is unique in its sensitivity to both structure and composition of surfaces. Additionally, LEIS is one of a very few surface-sensitive techniques capable of directly observing hydrogen atoms, an aspect that may make it an increasingly more important technique as the hydrogen economy is being explored.

Static secondary-ion mass spectrometry, or static SIMS is a secondary ion mass spectrometry technique for chemical analysis including elemental composition and chemical structure of the uppermost atomic or molecular layer of a solid which may be a metal, semiconductor or plastic with insignificant disturbance to its composition and structure. It is one of the two principal modes of operation of SIMS, which is the mass spectrometry of ionized particles emitted by a solid surface upon bombardment by energetic primary particles.

Semiconductor characterization techniques are used to characterize a semiconductor material or device. Some examples of semiconductor properties that could be characterized include the depletion width, carrier concentration, carrier generation and recombination rates, carrier lifetimes, defect concentration, and trap states.

References

  1. 1 2 B. Chapman, A. R. Inamdar, and D. C. Joy. (1999). "Preparation of transmission electron microscopy samples of composite materials". Materials Characterization, 43(1), 53–59.
  2. R. Behrisch, Sputtering by Particle Bombardment I. Berlin: Springer-Verlag, 1981.
  3. 1 2 S. Hofmann and M. Liu. (2003). "Advances in ion milling techniques for high resolution electron microscopy". Micron, 34(2), 117–123.
  4. Chang, D. H.; Jeong, S. H.; Kim, T. S.; Park, M.; Lee, K. W.; In, S. R. (2014). "Development progresses of radio frequency ion source for neutral beam injector in fusion devices". Review of Scientific Instruments. 85 (2): 02B303. Bibcode:2014RScI...85bB303C. doi:10.1063/1.4826076. PMID   24593580.
  5. 1 2 Jin, Qian Y.; Liu, Yu G.; Zhou, Yang; Wu, Qi; Zhai, Yao J.; Sun, Liang T. (2021). "RF and Microwave Ion Sources Study at Institute of Modern Physics". Plasma. 4 (2): 332–344. doi: 10.3390/plasma4020022 .
  6. A. Howie, D. B. Williams, and M. P. Seah. (1988). "The Royal Microscopical Society and the development of transmission electron microscopy". Microscopy Research and Technique, 9(3), 202–215.
  7. Welton, R. F.; Stockli, M. P.; Murray, S. N.; Carr, J.; Carmichael, J.; Goulding, R. H.; Baity, F. W. (2007). "Ion Source Development at the SNS". AIP Conference Proceedings. Vol. 925. pp. 87–104. doi:10.1063/1.2773649.
  8. C. D. Wagner and G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in x-Ray Photoelectron Spectroscopy. Eden Prairie, MN: Physical Electronics Division, Perkin-Elmer Corp., 1979.
  9. M. E. Thompson et al., "Optical Emission Spectroscopy of RF Argon Plasmas for Ion Beam Sputter Deposition," Journal of Vacuum Science & Technology A, vol. 12, no. 3, pp. 453–457, May/Jun. 1994.
  10. "Ion milling," Nanoscience Instruments, https://www.nanoscience.com/techniques/ion-milling/#:~:text=Semiconductor%20Manufacturing%3A%20Ion%20milling%20is,in%20an%20extremely%20controlled%20fashion (accessed Nov. 9, 2023).