Irrigation sprinkler

Last updated
An impact sprinkler head in action Impact Sprinkler Mechanism 2.jpg
An impact sprinkler head in action
Sprinklers spraying water to irrigate vine plants in a vineyard 10 Sprinklers in vineyard - Trentino-Alto Adige, Italy.jpg
Sprinklers spraying water to irrigate vine plants in a vineyard

An irrigation sprinkler (also known as a water sprinkler or simply a sprinkler) is a device used to irrigate (water) agricultural crops, lawns, landscapes, golf courses, and other areas. They are also used for cooling and for the control of airborne dust.[ citation needed ] Sprinkler irrigation is the method of applying water in a controlled manner in way similar to rainfall. The water is distributed through a network that may consist of pumps, valves, pipes, and sprinklers. [1]

Contents

Irrigation sprinklers can be used for residential, industrial, and agricultural usage. It is useful on uneven land where sufficient water is not available as well as on sandy soil. The perpendicular pipes, having rotating nozzles on top, are joined to the main pipeline at regular intervals. When water is pressurized through the main pipe it escapes from the rotating nozzles. It gets sprinkled on the crop. In sprinkler or overhead irrigation, water is piped to one more central locations within the field and distributed by overhead high pressure sprinklers or guns.

Types

Industrial

Higher pressure sprinklers that themselves move in a circle are driven by a ball drive, gear drive, or impact mechanism (impact sprinklers). These can be designed to rotate in a full or partial circle.

Rainguns are similar to impact sprinklers, except that they generally operate at very high pressures of 2.8 to 9.0 bar (280 to 900 kPa; 40 to 130 lbf/in2) and flows of 3 to 76 L/s (50 to 1,200 US gal/min), usually with nozzle diameters in the range of 10 to 50 mm (0.5 to 1.9 in). In addition to irrigation, guns are used for industrial applications such as dust suppression and logging.

Many irrigation sprinklers are buried in the ground along with their supporting plumbing, although above ground and moving sprinklers are also common. Most irrigation sprinklers operate through electric and hydraulic technology and are grouped together in zones that can be collectively turned on and off by actuating a solenoid valve.

Residential

An oscillating sprinkler is commonly used to water residential lawns, and is moved as needed. Sprinkler Fun (13846184435).jpg
An oscillating sprinkler is commonly used to water residential lawns, and is moved as needed.

Home lawn sprinklers vary widely in their size, cost, and complexity. They include impact sprinklers, oscillating sprinklers, drip sprinklers, underground sprinkler systems, and portable sprinklers. Permanently installed systems may often operate on timers or other automated processes. They are occasionally installed with retractable heads for aesthetic and practical reasons, reducing damage during lawn mowing. These types of systems usually can be programmed to start automatically on a set time and day each week.

Small portable sprinklers can be placed temporarily on lawns if additional watering is needed or if no permanent system is in place. These are often attached to an outdoor water faucet and are placed for a short period of time. Other systems may be professionally installed permanently in the ground and are attached permanently to a home's plumbing system.

An antique sprinkler developed by Nomad called a 'set-and-forget tractor sprinkler' was used in Australia in the 1950s. Water pressure ensured that the sprinkler moved slowly across a lawn. [2]

Agricultural science

Sprinkler nozzles, used in crop irrigation
Nelson A3000 Accelerator.png
Rotator style pivot applicator sprinkler
Nelson Big Gun.png
End Gun style pivot applicator sprinkler
PivotIrrigationOnCotton.jpg
Irrigation on a cotton farm

The first use of sprinklers by farmers was some form of home and golf course type sprinklers. These ad hoc systems, while doing the job of the buried pipes and fixed sprinkler heads, interfered with cultivation and were expensive to maintain. Center-pivot irrigation was invented in 1940 [3] by farmer Frank Zybach, who lived in Strasburg, Colorado. In the 1950s, Stout-Wyss Irrigation System, a firm based in Portland, Oregon, developed a rolling pipe type irrigation system for farms that has become the most popular type for farmers irrigating large fields. With this system, large wheels attached to the large pipes with sprinkler heads move slowly across the field. [4]

Underground

Underground sprinklers function through means of basic electronic and hydraulic technology. This valve and all of the sprinklers that will be activated by this valve are known as a zone. Upon activation, the solenoid, which sits on top of the valve is magnetized lifting a small stainless steel plunger in its center. By doing this, the activated (or raised) plunger allows water to escape from the top of a rubber diaphragm located in the center of the valve. Water that has been charged and waiting on the bottom of this same diaphragm now has the higher pressure and lifts the diaphragm. This pressurized water is then allowed to escape down stream of the valve through a series of pipes, usually made of PVC (higher pressure commercial systems) or polyethylene pipe (for typically lower pressure residential systems). At the end of these pipes and flush to ground level (typically) are pre measured and spaced out sprinklers. These sprinklers can be fixed spray heads that have a set pattern and generally spray between 1.5 and 2 m (5 and 7 ft), full rotating sprinklers that can spray a broken stream of water from 6 to 12 m (20 to 40 ft), or small drip emitters that release a slow, steady drip of water on more delicate plants such as flowers and shrubs. Use of indigenous materials also recommended. [5]

Health risks

In 2017, it was reported that use of common garden hoses in combination with spray nozzles may generate aerosols containing droplets smaller than 10 μm (0.39 mils), which can be inhaled by nearby people. Water stagnating in a hose between uses, especially when warmed by the sun, can host the growth and interaction of Legionella and free-living amoebae (FLA) as biofilms on the inner surface of the hose. Clinical cases of Legionnaires' disease or Pontiac fever have been found to be associated with inhalation of garden hose aerosols containing Legionella bacteria. The report provides measured microbial densities resulting from controlled hose conditions in order to quantify the human health risks. The densities of Legionella spp. identified in two types of hoses were found to be similar to those reported during legionellosis outbreaks from other causes. It is proposed that the risk could be mitigated by draining hoses after use. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Irrigation</span> Agricultural artificial application of water to land

Irrigation is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has been developed by many cultures around the world. Irrigation helps to grow crops, maintain landscapes, and revegetate disturbed soils in dry areas and during times of below-average rainfall. In addition to these uses, irrigation is also employed to protect crops from frost, suppress weed growth in grain fields, and prevent soil consolidation. It is also used to cool livestock, reduce dust, dispose of sewage, and support mining operations. Drainage, which involves the removal of surface and sub-surface water from a given location, is often studied in conjunction with irrigation.

<span class="mw-page-title-main">Center-pivot irrigation</span> Method of crop irrigation

Center-pivot irrigation, also called water-wheel and circle irrigation, is a method of crop irrigation in which equipment rotates around a pivot and crops are watered with sprinklers. A circular area centered on the pivot is irrigated, often creating a circular pattern in crops when viewed from above. Most center pivots were initially water-powered, however today most are propelled by electric motors.

<span class="mw-page-title-main">Fire sprinkler system</span> Fire protection method

A fire sprinkler system is an active fire protection method, consisting of a water supply system providing adequate pressure and flowrate to a water distribution piping system, to which fire sprinklers are connected. Although initially used only in factories and large commercial buildings, systems for homes and small buildings are now available at a cost-effective price.

<span class="mw-page-title-main">Nozzle</span> Device used to direct the flow of a fluid

A nozzle is a device designed to control the direction or characteristics of a fluid flow as it exits an enclosed chamber or pipe.

A drain cleaner or opener is a person, device or product unblocking sewer pipes or clogged wastewater drains. The term usually refers to a chemical or mechanical utensil such as a commercial chemical product, plumber's snake, drain auger or toilet plunger. Occasionally, it is applied to a plumber or another individual who performs the drain cleaning and hygiene.

<span class="mw-page-title-main">Check valve</span> Flow control device

A check valve, non-return valve, reflux valve, retention valve, foot valve, or one-way valve is a valve that normally allows fluid to flow through it in only one direction.

Drip irrigation or trickle irrigation is a type of micro-irrigation system that has the potential to save water and nutrients by allowing water to drip slowly to the roots of plants, either from above the soil surface or buried below the surface. The goal is to place water directly into the root zone and minimize evaporation. Drip irrigation systems distribute water through a network of valves, pipes, tubing, and emitters. Depending on how well designed, installed, maintained, and operated it is, a drip irrigation system can be more efficient than other types of irrigation systems, such as surface irrigation or sprinkler irrigation.

<span class="mw-page-title-main">Hose</span> Flexible hollow tube to carry fluids

A hose is a flexible hollow tube designed to carry fluids from one location to another. Hoses are also sometimes called pipes, or more generally tubing. The shape of a hose is usually cylindrical.

<span class="mw-page-title-main">Fire sprinkler</span> Component that discharges water to protect buildings

A fire sprinkler or sprinkler head is the component of a fire sprinkler system that discharges water when the effects of a fire have been detected, such as when a predetermined temperature has been exceeded. Fire sprinklers are extensively used worldwide, with over 40 million sprinkler heads fitted each year. In buildings protected by properly designed and maintained fire sprinklers, over 99% of fires were controlled by fire sprinklers alone.

<span class="mw-page-title-main">Hydraulic analogy</span> Widely used analogy for explaining electrical circuits

Electronic-hydraulic analogies are the representation of electronic circuits by hydraulic circuits. Since electric current is invisible and the processes in play in electronics are often difficult to demonstrate, the various electronic components are represented by hydraulic equivalents. Electricity was originally understood to be a kind of fluid, and the names of certain electric quantities are derived from hydraulic equivalents.

This is a glossary of firefighting equipment.

An irrigation controller is a device to operate automatic irrigation systems such as lawn sprinklers and drip irrigation systems. Most controllers have a means of setting the frequency of irrigation, the start time, and the duration of watering. Some controllers have additional features such as multiple programs to allow different watering frequencies for different types of plants, rain delay settings, input terminals for sensors such as rain and freeze sensors, soil moisture sensors, weather data, remote operation, etc.

<span class="mw-page-title-main">Solenoid valve</span> Electromechanical valve

A solenoid valve is an electromechanically operated valve.

<span class="mw-page-title-main">Garden hose</span> Flexible tube used to convey water

A garden hose, hosepipe, or simply hose is a flexible tube used to convey water. There are a number of common attachments available for the end of the hose, such as sprayers and sprinklers. Hoses are usually attached to a hose spigot or tap.

<span class="mw-page-title-main">Impact sprinkler</span> Type of irrigation sprinkler

An impact sprinkler is a type of irrigation sprinkler in which the sprinkler head, driven in a circular motion by the force of the outgoing water, pivots on a bearing on top of its threaded attachment nut. Invented in 1933 by Orton Englehart, it quickly found widespread use. Though it has in many situations been replaced by gear-driven "rotor heads", many varieties of impact sprinkler remain in use.

<span class="mw-page-title-main">Water timer</span>

A water timer is an electromechanical device that, when placed on a water line, increases or decreases the water flow through the use of an electro-mechanically actuated ball valve or embedded (solenoid) valve. It is used in conjunction with irrigation sprinklers to form an automated or non-automated sprinkler system, capable of administering precise amounts of water, at a regular basis. A water flow timer using a ball valve contains an electric motor with gears to stop or start the water flow by turning a perforated ball within the water flow line. The gearbox in a ball valve timer makes a rumbling sound when actuated. The solenoid type switching timers contain a solenoid that relieves pressure on a diaphragm in the water-flow tube or moves a stopper into the water flow area to regulate flow. The solenoid type uses no gears and makes a tapping sound when the solenoid is activated. Battery powered garden hose timers are the most commonly seen water timers and are seen in two types, the ball valve timer that is actuated by a motor with gears, and the diaphragm timer that is actuated by a solenoid. The solenoid/diaphragm timer uses more battery power throughout the "on" cycle because the solenoid must be actuated the entire time that the water flow is "on". The ball valve timer using the motor and gear actuator only uses more battery power during the few seconds that motor is used to turn the water flow on or off.

<span class="mw-page-title-main">Micro-irrigation</span> Low pressure and flow irrigation system

Micro-irrigation, also called Micro-spray,localized, low-volume, low-flow, or trickle irrigation, is an irrigation method with lower water pressure and flow than a traditional sprinkler system. Low-volume irrigation is used in agriculture for row crops, orchards, and vineyards. It is also used in horticulture in wholesale nurseries, in landscaping for civic, commercial, and private landscapes and gardens, and in the science and practice of restoration ecology and environmental remediation. The lower volume allows the water to be absorbed into slow-percolation soils such as clay, minimizing runoff.

<span class="mw-page-title-main">Subsurface textile irrigation</span>

Subsurface Textile Irrigation (SSTI) is a technology designed specifically for subsurface irrigation in all soil textures from desert sands to heavy clays. The use of SSTI will significantly reduce the usage of water, fertilizer and herbicide. It will lower on-going operational costs and, if maintained properly, will last for decades. By delivering water and nutrients directly to the root zone, plants are healthier and have a far greater yield.

Senninger Irrigation is a wholly owned subsidiary of Hunter Industries and manufacturer of irrigation products and services, based in Clermont, Florida, United States.

<span class="mw-page-title-main">Bermad</span>

BERMAD CS Ltd. is a developer and manufacturer of various water and flow management solutions.

References

  1. "CHAPTER 5. SPRINKLER IRRIGATION". www.fao.org. Retrieved 2016-08-26.
  2. The Ride family's 'Nomad' brand tractor lawn sprinkler, National Museum of Australia
  3. Morgan, Robert (1993). Water and the Land. Cathedral City, CA: Adams Publishing Corp. pp. 35–36. ISBN   0935030026.
  4. "Irrigation Pipe on Wheels Move Across Fields", July 1950 Popular Science, bottom of page 114
  5. Howser, Huell (November 8, 2010). "Rainbird – California's Gold (12002)". California's Gold. Chapman University Huell Howser Archive.
  6. Thomas, Jacqueline M.; Thomas, Torsten; Stuetz, Richard M.; Ashbolt, Nicholas J. (2014). "Your Garden Hose: A Potential Health Risk Due toLegionellaspp. Growth Facilitated by Free-Living Amoebae". Environmental Science & Technology. 48 (17): 10456–10464. Bibcode:2014EnST...4810456T. doi:10.1021/es502652n. ISSN   0013-936X. PMID   25075763.