Isolation lemma

Last updated

In theoretical computer science, the term isolation lemma (or isolating lemma) refers to randomized algorithms that reduce the number of solutions to a problem to one, should a solution exist. This is achieved by constructing random constraints such that, with non-negligible probability, exactly one solution satisfies these additional constraints if the solution space is not empty. Isolation lemmas have important applications in computer science, such as the Valiant–Vazirani theorem and Toda's theorem in computational complexity theory.

Contents

The first isolation lemma was introduced by Valiant & Vazirani (1986), albeit not under that name. Their isolation lemma chooses a random number of random hyperplanes, and has the property that, with non-negligible probability, the intersection of any fixed non-empty solution space with the chosen hyperplanes contains exactly one element. This suffices to show the Valiant–Vazirani theorem: there exists a randomized polynomial-time reduction from the satisfiability problem for Boolean formulas to the problem of detecting whether a Boolean formula has a unique solution. Mulmuley, Vazirani & Vazirani (1987) introduced an isolation lemma of a slightly different kind: Here every coordinate of the solution space gets assigned a random weight in a certain range of integers, and the property is that, with non-negligible probability, there is exactly one element in the solution space that has minimum weight. This can be used to obtain a randomized parallel algorithm for the maximum matching problem.

Stronger isolation lemmas have been introduced in the literature to fit different needs in various settings. For example, the isolation lemma of Chari, Rohatgi & Srinivasan (1993) has similar guarantees as that of Mulmuley et al., but it uses fewer random bits. In the context of the exponential time hypothesis, Calabro et al. (2008) prove an isolation lemma for k-CNF formulas. Noam Ta-Shma [1] gives an isolation lemma with slightly stronger parameters, and gives non-trivial results even when the size of the weight domain is smaller than the number of variables.

The isolation lemma of Mulmuley, Vazirani, and Vazirani

Any linear program with a randomly chosen linear cost function has a unique optimum with high probability. The isolation lemma of Mulmuley, Vazirani, and Vazirani extends this fact to arbitrary sets and a random cost function that is sampled using few random bits. Linear optimization in a 2-dimensional polytope.svg
Any linear program with a randomly chosen linear cost function has a unique optimum with high probability. The isolation lemma of Mulmuley, Vazirani, and Vazirani extends this fact to arbitrary sets and a random cost function that is sampled using few random bits.
Lemma. Let and be positive integers, and let be an arbitrary nonempty family of subsets of the universe . Suppose each element in the universe receives an integer weight , each of which is chosen independently and uniformly at random from . The weight of a set S in is defined as
Then, with probability at least , there is a unique set in that has the minimum weight among all sets of .

It is remarkable that the lemma assumes nothing about the nature of the family : for instance may include all nonempty subsets. Since the weight of each set in is between and on average there will be sets of each possible weight. Still, with high probability, there is a unique set that has minimum weight.

Mulmuley, Vazirani, and Vazirani's proof

Suppose we have fixed the weights of all elements except an element x. Then x has a threshold weight α, such that if the weight w(x) of x is greater than α, then it is not contained in any minimum-weight subset, and if , then it is contained in some sets of minimum weight. Further, observe that if , then every minimum-weight subset must contain x (since, when we decrease w(x) from α, sets that do not contain x do not decrease in weight, while those that contain x do). Thus, ambiguity about whether a minimum-weight subset contains x or not can happen only when the weight of x is exactly equal to its threshold; in this case we will call x "singular". Now, as the threshold of x was defined only in terms of the weights of the other elements, it is independent of w(x), and therefore, as w(x) is chosen uniformly from {1, …, N},

and the probability that somex is singular is at most n/N. As there is a unique minimum-weight subset iff no element is singular, the lemma follows.

Remark: The lemma holds with (rather than =) since it is possible that some x has no threshold value (i.e., x will not be in any minimum-weight subset even if w(x) gets the minimum possible value, 1).

Joel Spencer's proof

This is a restatement version of the above proof, due to Joel Spencer (1995). [2]

For any element x in the set, define

Observe that depends only on the weights of elements other than x, and not on w(x) itself. So whatever the value of , as w(x) is chosen uniformly from {1, …, N}, the probability that it is equal to is at most 1/N. Thus the probability that for somex is at most n/N.

Now if there are two sets A and B in with minimum weight, then, taking any x in A\B, we have

and as we have seen, this event happens with probability at most n/N.

Examples/applications

Notes

  1. Noam Ta-Shma (2015); A simple proof of the Isolation Lemma, in eccc
  2. Jukna (2001)
  3. Mulmuley, Vazirani & Vazirani (1987)
  4. Wigderson (1994)
  5. Reinhardt & Allender (2000)
  6. Hemaspaandra & Ogihara (2002)
  7. Majumdar & Wong (2001)
  8. Arvind & Mukhopadhyay (2008)
  9. Arvind, Mukhopadhyay & Srinivasan (2008)

Related Research Articles

In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The pair is called a measurable space.

In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

In mathematics, a base for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] parameterized by two positive shape parameters, denoted by alpha (α) and beta (β), that appear as exponents of the random variable and control the shape of the distribution. The generalization to multiple variables is called a Dirichlet distribution.

In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take “on average” over an arbitrarily large number of occurrences – given that a certain set of "conditions" is known to occur. If the random variable can take on only a finite number of values, the “conditions” are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.

In statistics, the Neyman–Pearson lemma was introduced by Jerzy Neyman and Egon Pearson in a paper in 1933. The Neyman-Pearson lemma is part of the Neyman-Pearson theory of statistical testing, which introduced concepts like errors of the second kind, power function, and inductive behavior. The previous Fisherian theory of significance testing postulated only one hypothesis. By introducing a competing hypothesis, the Neyman-Pearsonian flavor of statistical testing allows investigating the two types of errors. The trivial cases where one always rejects or accepts the null hypothesis are of little interest but it does prove that one must not relinquish control over one type of error while calibrating the other. Neyman and Pearson accordingly proceeded to restrict their attention to the class of all level tests while subsequently minimizing type II error, traditionally denoted by . Their seminal paper of 1933, including the Neyman-Pearson lemma, comes at the end of this endeavor, not only showing the existence of tests with the most power that retain a prespecified level of type I error, but also providing a way to construct such tests. The Karlin-Rubin theorem extends the Neyman-Pearson lemma to settings involving composite hypotheses with monotone likelihood ratios.

In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized. The underlying random variables may be random real numbers, or they may be random vectors, in which case the mixture distribution is a multivariate distribution.

The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory. It is one of Karp's 21 NP-complete problems shown to be NP-complete in 1972.

The Valiant–Vazirani theorem is a theorem in computational complexity theory stating that if there is a polynomial time algorithm for Unambiguous-SAT, then NP = RP. It was proven by Leslie Valiant and Vijay Vazirani in their paper titled NP is as easy as detecting unique solutions published in 1986. The proof is based on the Mulmuley–Vazirani–Vazirani isolation lemma, which was subsequently used for a number of important applications in theoretical computer science.

<span class="mw-page-title-main">Vijay Vazirani</span>

Vijay Virkumar Vazirani is an Indian American distinguished professor of computer science in the Donald Bren School of Information and Computer Sciences at the University of California, Irvine.

Cauchy's functional equation is the functional equation:

In the mathematical field of dynamical systems, a random dynamical system is a dynamical system in which the equations of motion have an element of randomness to them. Random dynamical systems are characterized by a state space S, a set of maps from S into itself that can be thought of as the set of all possible equations of motion, and a probability distribution Q on the set that represents the random choice of map. Motion in a random dynamical system can be informally thought of as a state evolving according to a succession of maps randomly chosen according to the distribution Q.

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

Linear Programming Boosting (LPBoost) is a supervised classifier from the boosting family of classifiers. LPBoost maximizes a margin between training samples of different classes and hence also belongs to the class of margin-maximizing supervised classification algorithms. Consider a classification function

The exponential mechanism is a technique for designing differentially private algorithms. It was developed by Frank McSherry and Kunal Talwar in 2007. Their work was recognized as a co-winner of the 2009 PET Award for Outstanding Research in Privacy Enhancing Technologies.

Learning with errors (LWE) is the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography.

Within computer science and operations research, many combinatorial optimization problems are computationally intractable to solve exactly . Many such problems do admit fast approximation algorithms—that is, algorithms that are guaranteed to return an approximately optimal solution given any input.

<span class="mw-page-title-main">Graphon</span>

In graph theory and statistics, a graphon is a symmetric measurable function , that is important in the study of dense graphs. Graphons arise both as a natural notion for the limit of a sequence of dense graphs, and as the fundamental defining objects of exchangeable random graph models. Graphons are tied to dense graphs by the following pair of observations: the random graph models defined by graphons give rise to dense graphs almost surely, and, by the regularity lemma, graphons capture the structure of arbitrary large dense graphs.

<span class="mw-page-title-main">Occam learning</span> Model of algorithmic learning

In computational learning theory, Occam learning is a model of algorithmic learning where the objective of the learner is to output a succinct representation of received training data. This is closely related to probably approximately correct (PAC) learning, where the learner is evaluated on its predictive power of a test set.

References