JAG2

Last updated
JAG2
Identifiers
Aliases JAG2 , HJ2, SER2, jagged 2, jagged canonical Notch ligand 2, LGMDR27
External IDs OMIM: 602570 MGI: 1098270 HomoloGene: 1677 GeneCards: JAG2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002226
NM_145159

NM_010588

RefSeq (protein)

NP_002217
NP_660142

NP_034718

Location (UCSC) Chr 14: 105.14 – 105.17 Mb Chr 12: 112.87 – 112.89 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Jagged-2 is a protein that in humans is encoded by the JAG2 gene. [5] [6] [7]

Contents

Function

The Notch signaling pathway is an intercellular signaling mechanism that is essential for proper embryonic development. Members of the Notch gene family encode transmembrane receptors that are critical for various cell fate decisions. The protein encoded by this gene is one of several ligands that activate Notch and related receptors. Two transcript variants encoding different isoforms have been found for this gene. [7]

Interactions

JAG2 has been shown to interact with NOTCH2. [8]

MicroRNA miR-1280 has been shown to inhibit JAG2 expression. [9]

Related Research Articles

<span class="mw-page-title-main">Notch signaling pathway</span> Series of molecular signals

The Notch signaling pathway is a highly conserved cell signaling system present in most animals. Mammals possess four different notch receptors, referred to as NOTCH1, NOTCH2, NOTCH3, and NOTCH4. The notch receptor is a single-pass transmembrane receptor protein. It is a hetero-oligomer composed of a large extracellular portion, which associates in a calcium-dependent, non-covalent interaction with a smaller piece of the notch protein composed of a short extracellular region, a single transmembrane-pass, and a small intracellular region.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 2</span> Protein-coding gene in the species Homo sapiens

Mothers against decapentaplegic homolog 2 also known as SMAD family member 2 or SMAD2 is a protein that in humans is encoded by the SMAD2 gene. MAD homolog 2 belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways.

<span class="mw-page-title-main">Aryl hydrocarbon receptor nuclear translocator</span> Protein-coding gene in the species Homo sapiens

The ARNT gene encodes the aryl hydrocarbon receptor nuclear translocator protein that forms a complex with ligand-bound aryl hydrocarbon receptor (AhR), and is required for receptor function. The encoded protein has also been identified as the beta subunit of a heterodimeric transcription factor, hypoxia-inducible factor 1 (HIF1). A t(1;12)(q21;p13) translocation, which results in a TEL-ARNT fusion protein, is associated with acute myeloblastic leukemia. Three alternatively spliced variants encoding different isoforms have been described for this gene.

<span class="mw-page-title-main">NOTCH3</span> Protein-coding gene in the species Homo sapiens

Neurogenic locus notch homolog protein 3(Notch 3) is a protein that in humans is encoded by the NOTCH3 gene.

<span class="mw-page-title-main">JAG1</span> Protein-coding gene in the species Homo sapiens

Jagged1 (JAG1) is one of five cell surface proteins (ligands) that interact with four receptors in the mammalian Notch signaling pathway. The Notch Signaling Pathway is a highly conserved pathway that functions to establish and regulate cell fate decisions in many organ systems. Once the JAG1-NOTCH (receptor-ligand) interactions take place, a cascade of proteolytic cleavages is triggered resulting in activation of the transcription for downstream target genes. Located on human chromosome 20, the JAG1 gene is expressed in multiple organ systems in the body and causes the autosomal dominant disorder Alagille syndrome (ALGS) resulting from loss of function mutations within the gene. JAG1 has also been designated as CD339.

<span class="mw-page-title-main">Notch 1</span> Protein-coding gene in the species Homo sapiens

Neurogenic locus notch homolog protein 1(Notch 1) is a protein encoded in humans by the NOTCH1 gene. Notch 1 is a single-pass transmembrane receptor.

<span class="mw-page-title-main">Notch 2</span> Protein-coding gene in the species Homo sapiens

Neurogenic locus notch homolog protein 2 is a protein that in humans is encoded by the NOTCH2 gene.

<span class="mw-page-title-main">NUMB (gene)</span> Protein-coding gene in the species Homo sapiens

Protein numb homolog is a protein that in humans is encoded by the NUMB gene. The protein encoded by this gene plays a role in the determination of cell fates during development. The encoded protein, whose degradation is induced in a proteasome-dependent manner by MDM2, is a membrane-bound protein that has been shown to associate with EPS15, LNX1, and NOTCH1. Four transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">Frizzled-8</span> Protein-coding gene in the species Homo sapiens

Frizzled-8(Fz-8) is a protein that in humans is encoded by the FZD8 gene.

<span class="mw-page-title-main">Delta-like 1</span> Protein-coding gene in the species Homo sapiens

Delta-like protein 1 is a protein that in humans is encoded by the DLL1 gene.

<span class="mw-page-title-main">RBPJ</span> Protein-coding gene in the species Homo sapiens

Recombination signal binding protein for immunoglobulin kappa J region is a protein that in humans is encoded by the RBPJ gene.

<span class="mw-page-title-main">HES1</span> Protein-coding gene in the species Homo sapiens

Transcription factor HES1 is a protein that is encoded by the Hes1 gene, and is the mammalian homolog of the hairy gene in Drosophila. HES1 is one of the seven members of the Hes gene family (HES1-7). Hes genes code nuclear proteins that suppress transcription.

<span class="mw-page-title-main">MFNG</span> Protein-coding gene in the species Homo sapiens

Beta-1,3-N-acetylglucosaminyltransferase manic fringe is an enzyme that in humans is encoded by the MFNG gene, a member of the fringe gene family which also includes the radical fringe (RFNG) and lunatic fringe (LFNG).

<span class="mw-page-title-main">Leukocyte receptor tyrosine kinase</span> Enzyme found in humans

Leukocyte receptor tyrosine kinase is an enzyme that in humans is encoded by the LTK gene.

<span class="mw-page-title-main">MAML1</span> Protein-coding gene in the species Homo sapiens

Mastermind-like protein 1 is a protein that in humans is encoded by the MAML1 gene.

<span class="mw-page-title-main">DTX1</span> Protein-coding gene in humans

Protein deltex-1 is a protein that in humans is encoded by the DTX1 gene.

<span class="mw-page-title-main">LFNG</span> Protein-coding gene in the species Homo sapiens

Beta-1,3-N-acetylglucosaminyltransferase lunatic fringe, (Lunatic Fringe), is a protein encoded in humans by the LFNG gene.

<span class="mw-page-title-main">EGFL7</span> Protein-coding gene in the species Homo sapiens

EGF-like domain-containing protein 7 is a protein that in humans is encoded by the EGFL7 gene. Intron 7 of EGFL7 hosts the miR-126 microRNA gene.

<span class="mw-page-title-main">Notch proteins</span>

Notch proteins are a family of type 1 transmembrane proteins that form a core component of the Notch signaling pathway, which is highly conserved in metazoans. The Notch extracellular domain mediates interactions with DSL family ligands, allowing it to participate in juxtacrine signaling. The Notch intracellular domain acts as a transcriptional activator when in complex with CSL family transcription factors. Members of this type 1 transmembrane protein family share several core structures, including an extracellular domain consisting of multiple epidermal growth factor (EGF)-like repeats and an intracellular domain transcriptional activation domain (TAD). Notch family members operate in a variety of different tissues and play a role in a variety of developmental processes by controlling cell fate decisions. Much of what is known about Notch function comes from studies done in Caenorhabditis elegans (C.elegans) and Drosophila melanogaster. Human homologs have also been identified, but details of Notch function and interactions with its ligands are not well known in this context.

In molecular biology there are a number of neurogenic proteins referred to as mastermind-like proteins (MAMLs) of which this domain is the N-terminal region. Mastermind-like proteins act as critical transcriptional co-activators for Notch signaling.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000184916 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000002799 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Luo B, Aster JC, Hasserjian RP, Kuo F, Sklar J (October 1997). "Isolation and functional analysis of a cDNA for human Jagged2, a gene encoding a ligand for the Notch1 receptor". Mol Cell Biol. 17 (10): 6057–67. doi:10.1128/MCB.17.10.6057. PMC   232455 . PMID   9315665.
  6. Deng Y, Madan A, Banta AB, Friedman C, Trask BJ, Hood L, Li L (April 2000). "Characterization, chromosomal localization, and the complete 30-kb DNA sequence of the human Jagged2 (JAG2) gene". Genomics. 63 (1): 133–8. doi:10.1006/geno.1999.6045. PMID   10662552.
  7. 1 2 "Entrez Gene: JAG2 jagged 2".
  8. Shimizu K, Chiba S, Hosoya N, Kumano K, Saito T, Kurokawa M, Kanda Y, Hamada Y, Hirai H (2000). "Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2". Mol. Cell. Biol. 20 (18): 6913–22. doi:10.1128/MCB.20.18.6913-6922.2000. PMC   88767 . PMID   10958687.
  9. Wang, Remke, Bhat, Wong, Zhou, Ramaswamy, Dubuc, Fonkem, Salem, Zhang, Hsieh, O'Rourke, Wu, Li, Hawkins, Kohane, Wu, Wu, Taylor (February 2015). "A MicroRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma". Oncotarget. 6 (5): 2709–24. doi:10.18632/oncotarget.2779. PMC   4413612 . PMID   25576913.

Further reading