JP-7

Last updated
The Pratt & Whitney J58 (JT11D-20) turbojet aero engine, which had a specific fuel requirement; namely JP-7 turbine fuel. Pratt & Whitney J58.jpg
The Pratt & Whitney J58 (JT11D-20) turbojet aero engine, which had a specific fuel requirement; namely JP-7 turbine fuel.

Turbine Fuel Low Volatility JP-7, commonly known as JP-7 (referred to as Jet Propellant 7 prior to MIL-DTL-38219 [2] ) is a specialized type of jet fuel developed in 1955 for the United States Air Force (USAF) for use in its supersonic military aircraft, including the SR-71 Blackbird [1] and the Boeing X-51 Waverider.

Contents

Usage

JP-7 was developed for the Pratt & Whitney J58 (JT11D-20) turbojet engine, which was used primarily in the now-retired Lockheed SR-71 Blackbird. [1] During flight, the SR-71 could attain speeds in excess of Mach 3+, which was the most efficient cruising speed for the J58 engines. However, very high skin temperatures are generated at this speed due to the rapid compression of the air along leading edges. A new jet fuel was needed that was not affected by the heat, so JP-7 jet fuel, with a high flash point and high thermal stability, was developed for this purpose.

The Boeing X-51 Waverider also uses JP-7 fuel in its Pratt & Whitney SJY61 scramjet engine, with fuel capacity of some 270 pounds (120 kg). [3] As with the SR-71, the X-51A design super-cools this fuel (cooled by extended subsonic flight in the stratosphere; prior to acceleration to supersonic speeds); then, when in supersonic flight, the fuel is heated by its circulation through heat exchangers which transfer to it the heat load of the interior spaces of the airframe. The fuel is then pumped through rotating mechanical parts of the engines and auxiliary mechanical equipment, providing both lubrication and cooling. Finally, at a temperature of nearly 550  °F (290  °C ), it is pumped into the fuel nozzles of the engines. [4]

History

"The operating envelope of the JT11D-20 engine requires special fuel. The fuel is not only the source of energy but is also used in the engine hydraulic system. During high Mach flight, the fuel is also a heat sink for the various aircraft and engine accessories which would otherwise overheat at the high temperatures encountered. This requires a fuel having high thermal stability so that it will not break down and deposit coke and varnishes in the fuel system passages. A high luminometer number [nb 1] (brightness of flame index) is required to minimize transfer of heat to the burner parts. Other items are also significant, such as the amount of sulfur impurities tolerated. Advanced fuels, JP-7 (PWA 535) and PWA 523E, were developed to meet the above requirements."

SR-71A Flight Manual, Section I, page 4 [1]

Shell Oil developed JP-7 in 1955. Company vice president Jimmy Doolittle arranged for Shell to develop the fuel for the Central Intelligence Agency (CIA) and United States Air Force's (USAF) secret Lockheed U-2 spy plane, which needed a low-volatility fuel that would not evaporate at high altitude. Manufacturing several hundred thousand gallons (about some 1 million liters) of the new fuel required the petroleum byproducts Shell normally used to make its FLIT insecticide, causing a nationwide shortage of that product that year. [5]

Composition

JP-7 is a compound mixture composed primarily of hydrocarbons; including alkanes, cycloalkanes, alkylbenzenes, indanes/tetralins, and naphthalenes; with addition of fluorocarbons to increase its lubricant properties, an oxidizing agent to make it burn more efficiently, and a caesium-containing compound known as A-50, which is to aid in disguising the radar and infrared signatures of the exhaust plume. The SR-71 Blackbirds used approximately 36,000–44,000 pounds (16,000–20,000 kg) of fuel per hour of flight. [6]

JP-7 is unusual in that it is not a conventional distillate fuel, but is created from special blending stocks in order to have very low (<3%) concentration of highly volatile components like benzene or toluene, and almost no sulfur, oxygen, and nitrogen impurities. It has a low vapor pressure, and high thermal oxidation stability. The fuel must operate across a wide range of temperatures: from near freezing at high altitude, to the high temperatures of the airframe and engine parts that are being cooled by it at high speed. Its volatility must be low enough to make it flash-resistant at these high temperatures.

The very low volatility, and relative unwillingness of JP-7 to be ignited, required triethylborane (TEB) to be injected into the engine in order to initiate combustion, and allow afterburner operation in flight. The SR-71 had a limited capacity for TEB, and therefore had a limited number of available 'shots' of TEB (usually 16) for restarts, and those had to be managed carefully on long-duration flights with multiple stages of relatively low-altitude air refueling and normal high-altitude cruise flight.

Properties

See also

Related Research Articles

<span class="mw-page-title-main">Jet engine</span> Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, pulse jet, or scramjet. In general, jet engines are internal combustion engines.

<span class="mw-page-title-main">Ramjet</span> Supersonic atmospheric jet engine

A ramjet is a form of airbreathing jet engine that requires forward motion of the engine to provide air for combustion. Ramjets work most efficiently at supersonic speeds around Mach 3 and can operate up to Mach 6.

<span class="mw-page-title-main">Lockheed SR-71 Blackbird</span> US Air Force supersonic aircraft, 1964–1998

The Lockheed SR-71 "Blackbird" is a retired long-range, high-altitude, Mach 3+ strategic reconnaissance aircraft developed and manufactured by the American aerospace company Lockheed Corporation. The SR-71 has several nicknames, including "Blackbird" and "Habu".

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Supersonic transport</span> Airliner faster than the speed of sound

A supersonic transport (SST) or a supersonic airliner is a civilian supersonic aircraft designed to transport passengers at speeds greater than the speed of sound. To date, the only SSTs to see regular service have been Concorde and the Tupolev Tu-144. The last passenger flight of the Tu-144 was in June 1978 and it was last flown in 1999 by NASA. Concorde's last commercial flight was in October 2003, with a November 26, 2003 ferry flight being its last airborne operation. Following the permanent cessation of flying by Concorde, there are no remaining SSTs in commercial service. Several companies have each proposed a supersonic business jet, which may bring supersonic transport back again.

<span class="mw-page-title-main">Scramjet</span> Jet engine where combustion takes place in supersonic airflow

A scramjet is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion, but where as a ramjet decelerates the air to subsonic velocities before combustion using shock cones, a scramjet has no shock cone and slows the airflow using shockwaves produced by its ignition source in place of a shock cone. This allows the scramjet to operate efficiently at extremely high speeds.

<span class="mw-page-title-main">Lockheed L-2000</span> Proposed US supersonic airliner design

The Lockheed L-2000 was Lockheed Corporation's entry in a government-funded competition to build the United States' first supersonic airliner in the 1960s. The L-2000 lost the contract to the Boeing 2707, but that competing design was ultimately canceled for political, environmental and economic reasons.

<span class="mw-page-title-main">Afterburner</span> Turbojet engine component

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption.

<span class="mw-page-title-main">Lockheed YF-12</span> American prototype interceptor aircraft

The Lockheed YF-12 was an American Mach 3+ capable, high-altitude interceptor prototype, developed and manufactured by American aerospace company Lockheed Corporation.

<span class="mw-page-title-main">Lockheed A-12</span> High-altitude, supersonic reconnaissance aircraft

The Lockheed A-12 is a retired high-altitude, Mach 3+ reconnaissance aircraft built for the United States Central Intelligence Agency (CIA) by Lockheed's Skunk Works, based on the designs of Clarence "Kelly" Johnson. The aircraft was designated A-12, the 12th in a series of internal design efforts for "Archangel", the aircraft's internal code name. In 1959, it was selected over Convair's FISH and Kingfish designs as the winner of Project GUSTO, and was developed and operated under Project Oxcart.

<span class="mw-page-title-main">Pratt & Whitney J58</span> High-speed jet engine by Pratt & Whitney

The Pratt & Whitney J58 is an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet engine with a unique compressor bleed to the afterburner that gave increased thrust at high speeds. Because of the wide speed range of the aircraft, the engine needed two modes of operation to take it from stationary on the ground to 2,000 mph (3,200 km/h) at altitude. It was a conventional afterburning turbojet for take-off and acceleration to Mach 2 and then used permanent compressor bleed to the afterburner above Mach 2. The way the engine worked at cruise led it to be described as "acting like a turboramjet". It has also been described as a turboramjet based on incorrect statements describing the turbomachinery as being completely bypassed.

<span class="mw-page-title-main">Jet fuel</span> Type of aviation fuel

Jet fuel or aviation turbine fuel is a type of aviation fuel designed for use in aircraft powered by gas-turbine engines. It is colorless to straw-colored in appearance. The most commonly used fuels for commercial aviation are Jet A and Jet A-1, which are produced to a standardized international specification. The only other jet fuel commonly used in civilian turbine-engine powered aviation is Jet B, which is used for its enhanced cold-weather performance.

<span class="mw-page-title-main">Ben Rich (engineer)</span> American aircraft designer

Benjamin Robert Rich was an American engineer and the second Director of Lockheed's Skunk Works from 1975 to 1991, succeeding its founder, Kelly Johnson. Regarded as the "father of stealth", Rich was responsible for leading the development of the F-117, the first production stealth aircraft. He also worked on the F-104, U-2, A-12, SR-71, and F-22, among others.

<span class="mw-page-title-main">Supersonic aircraft</span> Aircraft that travels faster than the speed of sound

A supersonic aircraft is an aircraft capable of supersonic flight, that is, flying faster than the speed of sound. Supersonic aircraft were developed in the second half of the twentieth century. Supersonic aircraft have been used for research and military purposes, but only two supersonic aircraft, the Tupolev Tu-144 and the Concorde, ever entered service for civil use as airliners. Fighter jets are the most common example of supersonic aircraft.

Triethylborane (TEB), also called triethylboron, is an organoborane. It is a colorless pyrophoric liquid. Its chemical formula is (CH3CH2)3B or (C2H5)3B, abbreviated Et3B. It is soluble in organic solvents tetrahydrofuran and hexane.

<span class="mw-page-title-main">Convair Kingfish</span> Reconnaissance aircraft design

The Convair Kingfish reconnaissance aircraft design was the ultimate result of a series of proposals designed at Convair as a replacement for the Lockheed U-2. Kingfish competed with the Lockheed A-12 for the Project Oxcart mission, and lost to that design in 1959.

<span class="mw-page-title-main">Components of jet engines</span> Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

An airbreathing jet engine is a jet engine in which the exhaust gas which supplies jet propulsion is atmospheric air, which is taken in, compressed, heated, and expanded back to atmospheric pressure through a propelling nozzle. Compression may be provided by a gas turbine, as in the original turbojet and newer turbofan, or arise solely from the ram pressure of the vehicle's velocity, as with the ramjet and pulsejet.

<span class="mw-page-title-main">Lockheed Martin SR-72</span> US Air Force hypersonic aircraft concept

The Lockheed Martin SR-72, colloquially referred to as "Son of Blackbird", is an American hypersonic UAV concept intended for intelligence, surveillance and reconnaissance (ISR) proposed privately in 2013 by Lockheed Martin as a successor to the retired Lockheed SR-71 Blackbird. In 2018, company executives said an SR-72 test vehicle could fly by 2025 and enter service in the 2030s.

Aircraft engine performance refers to factors including thrust or shaft power for fuel consumed, weight, cost, outside dimensions and life. It includes meeting regulated environmental limits which apply to emissions of noise and chemical pollutants, and regulated safety aspects which require a design that can safely tolerate environmental hazards such as birds, rain, hail and icing conditions. It is the end product that an engine company sells.

References

Notes
  1. Note that a high luminometer number corresponds, somewhat counter-intuitively, to a low brightness for a given amount of heat generated. [nb 2] Therefore, a high luminometer number means that, for a given amount of energy released in combustion, more of the energy goes into heating the gas, and less into heating the surrounding structure through radiative transfer, than would be the case for a low luminometer number fuel. But this does not say anything about other mechanisms of transfer, e.g., diffusive transfer, which may be greater or lesser.
  2. Bachman, K.C. (1961). "Relation of Luminometer Number to Molecular Structure and Smoke Point". Journal of Chemical & Engineering Data. 6 (4): 631–634. doi:10.1021/je60011a045.
References
  1. 1 2 3 4 SR-71A Flight Manual (U), Issue E, Change 2. SR-71 Online - Paul R. Kucher. 31 July 1989. Retrieved 17 June 2017.{{cite book}}: |website= ignored (help)
  2. "ASSIST Quick Search, Basic Profile: MIL-T-38219D Military Specification, Turbine Fuel, Low Volatility, JP-7". DLA.mil. DLA Document Services. 21 August 1998. Archived from the original on 22 February 2012.
  3. "Factsheets: X-51A Waverider". AF.mil. U.S. Air Force. 23 March 2011. Retrieved 17 June 2017.
  4. "X-51 Waverider makes Historic Hypersonic Flight". ScientificComputing.com. Scientific Computing. 28 May 2010. Retrieved 17 June 2017.
  5. Gregory W. Pedlow; Donald E. Welzenbach (1992). The Central Intelligence Agency and Overhead Reconnaissance: The U-2 and OXCART Programs, 1954-1974 (PDF). Washington DC: History Staff, Central Intelligence Agency. pp. 61–62. Archived from the original (PDF) on 22 April 2016.{{cite book}}: |website= ignored (help)
  6. "Beale removes fuel storage tanks that kept Blackbird soaring". Beale Air Force Base. Retrieved 2020-07-29.
Bibliography