JP Aerospace

Last updated
JP Aerospace
IndustryAerospace
FounderJohn Marchel Powell
Michael Stucky
Scott Mayo
Website jpaerospace.com

JP Aerospace is an American company that aims to achieve affordable access to space. Their main activities include high-atmospheric lighter-than-air flights carrying cameras or miniature experiments called PongSats and minicubes. They are also engaged in an Airship to Orbit project.

Contents

JP Aerospace was founded by John Marchel Powell, familiarly known as "JP", with Michael Stucky and Scott Mayo. JP Aerospace specializes in lighter-than-air flight, with the stated aim of achieving cheap access to space. [1]

Balloon flights

An early suborbital space launch attempt using a rockoon (balloon-launched high power rocket) at the Black Rock Desert in northwestern Nevada in May 1999 was unsuccessful. The event was covered by CNN. [2] The CATS Prize expired without being awarded in November 2000. [3]

In the early 21st century they developed a V-shaped high-altitude airship under a U.S. Air Force initiative to provide the rapid launch of battlefield communication and monitoring systems. [4] [5]

Since then, JP Aerospace has launched several balloons into the upper atmosphere, carrying mixed payloads for research students and media companies. Media clients have included The Discovery Channel, National Geographic, and Toshiba's 2009 television commercial Space Chair . In 2011, a twin-balloon utility airship is claimed to have set an altitude record of 95,085 feet (ca. 28,982 m) on October 22, 2011. [6]

A PongSat is a small experiment housed in a table tennis or ping-pong ball. A MiniCube is slightly larger. JP Aerospace claim to have carried many hundreds or thousands of student PongSat projects to a near-space environment at low cost. The flights are typically crowdfunded. [7]

Commercial flights, typically carrying cameras, have been made for a number of media organizations.[ citation needed ]

Airships

JP Aerospace obtained a contract for development of military communication and surveillance airships designed to hover over battlefields at altitudes too high for conventional anti-aircraft systems. A prototype was completed in 2005 but was damaged while being prepared for flight and the contract was ended. [8]

Other vehicles are still under development, and JP aerospace has subsequently flown several aerostats as testbeds for ATO hardware and techniques. [9]

The JP Aerospace Twin Balloons Airship is an unmanned airship comprising two balloon envelopes side by side, with twin electric-powered propellers mounted midway along the connecting boom. On October 22, 2011 it is claimed to have flown to 95,085 feet (ca. 28,982 m), nearly 4 miles higher than any airship before. [10] [11]

Airship to Orbit project

JP Aerospace are developing technology intended to launch airships into orbit.

The proposed system employs three separate airship stages to reach orbit. Multiple vehicles are needed because an airship made strong enough to survive the dense and turbulent lower atmosphere would be too small and heavy to lift payloads high enough. An orbital airship must be much larger and with thinner walls to maintain its buoyancy-to-weight ratio. The three stages are; the Ascender ground launcher, the Dark Sky permanent sky station, and the Orbital Ascender spacecraft. [12] A fourth airship design similar to the record-breaking Tandem but based on air-filled beams will be required for the assembly of Dark Sky Station.

Because of the thin atmosphere at such high altitudes, to carry a useful payload very large volume and/or very strong but lightweight materials are required. The ISAS BU60-1 scientific balloon holds the world altitude record for an unmanned balloon as of 2009, at 53.0 km. The average density of BU60-1 over its gross volume was 0.00066 kg per cubic meter. [13] To fly higher, this must be significantly improved.

Ascender

The Ascender airship would operate between the ground and the Dark Sky Station at 140,000 feet (ca. 42,672 m). A long, V-shaped planform with an airfoil profile would provide aerodynamic lift to supplement the airship's inherent buoyancy, with the craft driven by propellers designed to operate in a near vacuum. The Ascender would be larger than any airship yet built, but would be dwarfed by the later stages. It would be operated by a crew of three. [12]

JP aerospace has developed two large-scale test models, the Ascender 90 and the Ascender 175. The number denotes the length of the airship in feet (ca. 27.4 m and 53.3 m). More recent airships have reverted to being named in sequence.

Dark Sky Station

The Dark Sky Station would be a permanent floating structure, remaining at 140,000 feet (ca. 42,672 m). It provides an intermediate stage allowing transfer of cargo or personnel between the Ascender stage and the orbital stage. It would also serve as the construction facility for the orbital component, which would be too fragile to travel lower. [12]

The station could also be used as a relay station for telecommunications due to its high altitude.

Orbital Ascender

The Orbital Ascender airship would be the final flight stage from the station to orbit. [14] It would initially rise as a lighter-than-air craft from the station at 140,000 feet to 180,000 feet (ca. 42,672 m to 54,864 m). The orbiter would have to be over a mile long to gain enough buoyancy.

At 180,000 ft it would accelerate forwards using lightweight, low power ion propulsion, enabling it to rise further with additional aerodynamic lift. This would be powered by solar panels which cover most of the upper surface of the airship. The V-shaped planform and airfoil profile would allow hypersonic flight by 200,000 feet, increasing to orbital speed (above Mach 20). [12] [15]

If hit by a meteorite or space debris, this would have little effect because the inner cells are "zero pressure balloons" saying "There is no difference in pressure to create a bursting force. All a meteorite would do is to make a hole. The gas would leak out staggeringly slowly..." (Page 112). [1] They[ who? ] also say (page 109) that ""By losing velocity before it reaches the lower thicker atmosphere, the reentry temperatures are radically lower.... This makes reentry as safe as the climb to orbit". The skin would be made of nylon rip-stop polyethylene (page 111). On re-entry the orbital airship slows down at a very high altitude because it has such low mass with such a large cross section presented to the atmosphere (a low ballistic coefficient).

See also

Related Research Articles

<span class="mw-page-title-main">Airship</span> Powered lighter-than-air aircraft

An airship or dirigible balloon is a type of aerostat or lighter-than-air aircraft that can navigate through the air under its own power. Aerostats gain their lift from a lifting gas that is less dense than the surrounding air.

<span class="mw-page-title-main">Sounding rocket</span> Rocket designed to take measurements during its flight

A sounding rocket or rocketsonde, sometimes called a research rocket or a suborbital rocket, is an instrument-carrying rocket designed to take measurements and perform scientific experiments during its sub-orbital flight. The rockets are used to launch instruments from 48 to 145 km above the surface of the Earth, the altitude generally between weather balloons and satellites; the maximum altitude for balloons is about 40 km and the minimum for satellites is approximately 121 km. Certain sounding rockets have an apogee between 1,000 and 1,500 km, such as the Black Brant X and XII, which is the maximum apogee of their class. Sounding rockets often use military surplus rocket motors. NASA routinely flies the Terrier Mk 70 boosted Improved Orion, lifting 270–450-kg (600–1,000-pound) payloads into the exoatmospheric region between 97 and 201 km.

<span class="mw-page-title-main">Skyhook (structure)</span> Proposed momentum exchange tether

A skyhook is a proposed momentum exchange tether that aims to reduce the cost of placing payloads into low Earth orbit. A heavy orbiting station is connected to a cable which extends down towards the upper atmosphere. Payloads, which are much lighter than the station, are hooked to the end of the cable as it passes, and are then flung into orbit by rotation of the cable around the center of mass. The station can then be reboosted to its original altitude by electromagnetic propulsion, rocket propulsion, or by deorbiting another object with the same kinetic energy as transferred to the payload.

<span class="mw-page-title-main">Kármán line</span> Proposed definition for the boundary of outer space

The Kármán line is a proposed conventional boundary between Earth's atmosphere and outer space set by the international record-keeping body FAI at an altitude of 100 kilometres above mean sea level. However, such definition of the edge of space is not universally adopted.

<span class="mw-page-title-main">Balloon (aeronautics)</span> Type of aerostat that remains aloft due to its buoyancy

In aeronautics, a balloon is an unpowered aerostat, which remains aloft or floats due to its buoyancy. A balloon may be free, moving with the wind, or tethered to a fixed point. It is distinct from an airship, which is a powered aerostat that can propel itself through the air in a controlled manner.

<i>Explorer II</i> 1935 American high-altitude balloon

Explorer II was a crewed U.S. high-altitude balloon that was launched on November 11, 1935, and reached a record altitude of 22,066 m (72,395 ft). Launched at 8:00 am from the Stratobowl in South Dakota, the helium balloon carried a two-man crew consisting of U. S. Army Air Corps Captains Albert W. Stevens and Orvil A. Anderson inside a sealed, spherical cabin. The crew landed safely near White Lake, South Dakota, at 4:13 pm and both were acclaimed as national heroes. Scientific instruments carried on the gondola returned useful information about the stratosphere. The mission was funded by the membership of the National Geographic Society.

<span class="mw-page-title-main">Ballute</span> Parachute-like braking device

The ballute is a parachute-like braking device optimized for use at high altitudes and supersonic velocities.

<span class="mw-page-title-main">Rockoon</span> A sounding rocket carried by balloon to the upper atmosphere

A rockoon is a solid fuel sounding rocket that, rather than being lit immediately while still on the ground, is first carried into the upper atmosphere by a gas-filled balloon, then separated from the balloon and ignited. This allows the rocket to achieve a higher altitude, as the rocket does not have to move under power through the lower and thicker layers of the atmosphere.

This is an alphabetical list of articles pertaining specifically to aerospace engineering. For a broad overview of engineering, see List of engineering topics. For biographies, see List of engineers.

<span class="mw-page-title-main">ARCAspace</span> Aerospace company headquartered in Romania

Romanian Cosmonautics and Aeronautics Association, also known as ARCAspace, is an aerospace company based in Râmnicu Vâlcea, Romania. It builds rockets, high-altitude balloons, and unmanned aerial vehicles. It was founded in 1999 as a non-governmental organization in Romania by the Romanian engineer and entrepreneur Dumitru Popescu and other rocket and aeronautics enthusiasts. Since then, ARCA has launched two stratospheric rockets and four large-scale stratospheric balloons including a cluster balloon. It was awarded two governmental contracts with the Romanian government and one contract with the European Space Agency. ARCASpace is currently developing a three-stage, semi-reusable steam-powered rocket called EcoRocket and in 2022 has shifted its business model to Asteroid mining.

<span class="mw-page-title-main">1955 in spaceflight</span>

In 1955, both the United States and the Soviet Union (USSR) announced plans for launching the world's first satellites during the International Geophysical Year (IGY) of 1957–58. Project Vanguard, proposed by the US Navy, won out over the US Army's Project Orbiter as the satellite and rocket design to be flown in the IGY. Development of Intercontinental Ballistic Missiles, the Atlas by the US and the R-7 by the USSR, accelerated, entering the design and construction phase.

<span class="mw-page-title-main">CU Spaceflight</span> Student-run society at Cambridge University

CU Spaceflight is a student-run society at Cambridge University. It is founded with the aim of achieving access to space, with minimal financial expenses. The society is supported by the Cambridge-MIT Institute.

<span class="mw-page-title-main">Non-rocket spacelaunch</span> Concepts for launch into space

Non-rocket spacelaunch refers to theoretical concepts for launch into space where much of the speed and altitude needed to achieve orbit is provided by a propulsion technique that is not subject to the limits of the rocket equation. Although all space launches to date have been rockets, a number of alternatives to rockets have been proposed. In some systems, such as a combination launch system, skyhook, rocket sled launch, rockoon, or air launch, a portion of the total delta-v may be provided, either directly or indirectly, by using rocket propulsion.

<span class="mw-page-title-main">High-altitude platform station</span> Aircraft that provides common satellite services

A high-altitude platform station also known as atmospheric satellite is a long endurance, high altitude aircraft able to offer observation or communication services similarly to artificial satellites. Mostly unmanned aerial vehicles (UAVs), they remain aloft through atmospheric lift, either aerodynamic like airplanes, or aerostatic like airships or balloons. High-altitude long endurance (HALE) military drones can fly above 60,000 ft over 32 hours, while civil HAPS are radio stations at an altitude of 20 to 50 km above waypoints, for weeks.

<span class="mw-page-title-main">Rocket sled launch</span> Proposed method for launching space vehicles

A rocket sled launch, also known as ground-based launch assist, catapult launch assist, and sky-ramp launch, is a proposed method for launching space vehicles. With this concept the launch vehicle is supported by an eastward pointing rail or maglev track that goes up the side of a mountain while an externally applied force is used to accelerate the launch vehicle to a given velocity. Using an externally applied force for the initial acceleration reduces the propellant the launch vehicle needs to carry to reach orbit. This allows the launch vehicle to carry a larger payload and reduces the cost of getting to orbit. When the amount of velocity added to the launch vehicle by the ground accelerator becomes great enough, single-stage-to-orbit flight with a reusable launch vehicle becomes possible.

<span class="mw-page-title-main">High Altitude Venus Operational Concept</span> NASA crewed Venus mission concept

High Altitude Venus Operational Concept (HAVOC) is a set of crewed NASA mission concepts to the planet Venus. All human portions of the missions would be conducted from lighter-than-air craft or from orbit. A similar concept, the "Floating Islands of Venus", was proposed by Soviet engineer and sci-fi writer Sergei Zhitomirsky in 1971.

<span class="mw-page-title-main">Zero 2 Infinity</span> Private Spanish company developing high-altitude balloons

Zero 2 Infinity is a private Spanish company developing high-altitude balloons intended to provide access to near space and low Earth orbit using a balloon-borne pod and a balloon-borne launcher.

Venus Atmospheric Maneuverable Platform (VAMP) is a mission concept by the aerospace companies Northrop Grumman and LGarde for a powered, long endurance, semi-buoyant inflatable aircraft that would explore the upper atmosphere of planet Venus for biosignatures as well as perform atmospheric measurements. The inflatable aircraft has a trapezoidal shape that is sometimes called delta wing or flying wing, and would have dual electric-driven propellers that would be stowed during atmospheric entry.

Deimos-One is an American spaceflight technology development company working on an AI powered, autonomous UAV rocket system to move payloads to space. As of January 2021, the company has completed a successful prototype test flight, reaching an altitude of 30 km (19 mi).

PongSats are high-altitude "near-space" missions that hold a probe or other project that can fit inside a ping-pong ball. The launch program is run by a volunteer organization, JP Aerospace

References

  1. 1 2 Powell, John M. (2005). Floating to Space: The Airship to Orbit Program, Apogee Books Space Series. ISBN   1-894959-73-6
  2. Knapp, Don (1999-05-31). "Homebrew rocketeers race to be first in space". CNN . Retrieved 2010-02-25.
  3. "CATS Prize unclaimed as last team fails". Rocketry Planet. 2000-11-02. Retrieved 2010-02-25.
  4. Alan Boyle (2004), Airship groomed for flight to edge of space, MSNBC
  5. Jeff Foust (2004), Floating to Space, The Space Review
  6. "Tandem Flies to 95,085 feet". JP Aerospace. Retrieved 27 October 2011.
  7. Ping Pong Ball 'Satellites' Have Balloon Ride to Edge of Space, space.com, 13 September 2012 (retrieved 28 August 2015).
  8. Spacefellowship.com Topic – Near Space Maneuvering Vehicle
  9. Spacefellowship.com Official JP Aerospace Forum
  10. "JP Aerospace Airship Flies To The Edge Of Space". October 27, 2011.
  11. "JP Aerospace Airship Flies to the Edge of Space, Smashing the Existing World Altitude Record". SpaceRef. 2011-10-26. Retrieved 2024-05-03.
  12. 1 2 3 4 JP Aerospace "Airship to Orbit Handout". Airship to Orbit - Cheap, Bulk, Safe Access to Space
  13. T. Tamagami. “Research on Balloons to Float over 50 km Altitude” JAXA ISAS Special Feature
  14. David Kushner, Space Invaders, IEEE Spectrum
  15. Boyle, A. “Airship groomed for flight to edge of space” nbcnews.com May 21, 2004