James F. Woodward

Last updated

James F. Woodward (born 1941) is a professor emeritus of history and an adjunct professor of physics at California State University, Fullerton. He is best known for a physics hypothesis that he proposed in 1990, later expanded, that predicts several physical effects that he refers to as 'Mach effects'. Woodward claims the effect could be used as a reactionless drive for space travel.

Contents

Education and professorships

Woodward is a professor emeritus of history and an adjunct professor of physics at California State University, Fullerton. [1]

Mach effects

Woodward claims that his hypothesis predicts physical forces that he calls Mach effects but are also referred to as the Woodward effect. He says that his hypothesis is based on Mach's principle that posits inertia, the resistance of mass to acceleration, is a result of the mutual gravitational attraction of all matter in the universe. Thus, if the mass of a given object can be varied while being oscillated in a linear or orbital path, such that the mass is high while the mass is moving in one direction and low while moving back, then the net effect should be acceleration in one direction as the inertial drag of the universe upon the object varies as its mass varies. If a spacecraft engine could be designed to exploit it then acceleration could be produced without using rocket propellants. [2] The effect is controversial because within mainstream physics the underlying model proposed for it appears to be faulty, resulting in violations of energy conservation as well as momentum conservation. [3] Woodward and his associates have claimed since the 1990s to have successfully measured forces at levels great enough for practical use and also claim to be working on the development of a practical prototype thruster. No practical working devices have been publicly demonstrated, and other experiments have failed to corroborate these claims. [4]

Speculation on space travel

He frequently contributes to articles on speculative space travel subjects, [5] especially wormholes. [6] In 2012, he published a book on the application of the physical effects predicted by his hypothesis to space travel. [7]

Related Research Articles

Faster-than-light travel and communication are the conjectural propagation of matter or information faster than the speed of light. The special theory of relativity implies that only particles with zero rest mass may travel at the speed of light, and that nothing may travel faster.

In classical physics and special relativity, an inertial frame of reference is a frame of reference with constant velocity. in such a frame of reference an object with zero net force acting on it is perceived to move with a constant velocity or, equivalently, it is a frame of reference in which Newton's first law of motion holds. All inertial frames are in a state of constant, rectilinear motion with respect to one another; in other words, an accelerometer moving with any of them would detect zero acceleration.

<span class="mw-page-title-main">Mass</span> Amount of matter present in an object

Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure of the body's inertia, meaning the resistance to acceleration when a net force is applied. The object's mass also determines the strength of its gravitational attraction to other bodies.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

The following is a timeline of gravitational physics and general relativity.

In theoretical physics, particularly in discussions of gravitation theories, Mach's principle is the name given by Albert Einstein to an imprecise hypothesis often credited to the physicist and philosopher Ernst Mach. The hypothesis attempted to explain how rotating objects, such as gyroscopes and spinning celestial bodies, maintain a frame of reference.

<span class="mw-page-title-main">Kip Thorne</span> American physicist (born 1940)

Kip Stephen Thorne is an American theoretical physicist known for his contributions in gravitational physics and astrophysics. Along with Rainer Weiss and Barry C. Barish, he was awarded the 2017 Nobel Prize in Physics for his contributions to the LIGO detector and the observation of gravitational waves.

In theoretical physics, negative mass is a hypothetical type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. Such matter would violate one or more energy conditions and exhibit strange properties such as the oppositely oriented acceleration for an applied force orientation. It is used in certain speculative hypothetical technologies such as time travel to the past and future, construction of traversable artificial wormholes, which may also allow for time travel, Krasnikov tubes, the Alcubierre drive, and potentially other types of faster-than-light warp drives. Currently, the closest known real representative of such exotic matter is a region of negative pressure density produced by the Casimir effect.

The Breakthrough Propulsion Physics Project (BPP) was a research project funded by NASA from 1996 to 2002 to study various proposals for revolutionary methods of spacecraft propulsion that would require breakthroughs in physics before they could be realized. The project ended in 2002, when the Advanced Space Transportation Program was reorganized and all speculative research was cancelled. During its six years of operational funding, this program received a total investment of $1.2 million.

Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them, or a difference in gravitational potential between their locations. When unspecified, "time dilation" usually refers to the effect due to velocity.

<span class="mw-page-title-main">Equivalence principle</span> The hypothesis that inertial and gravitational masses are equivalent

The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times. The extended form by Albert Einstein requires special relativity to also hold in free fall and requires the weak equivalence to be valid everywhere. This form was a critical input for the development of the theory of general relativity. The strong form requires Einstein's form to work for stellar objects. Highly precise experimental tests of the principle limit possible deviations from equivalence to be very small.

<span class="mw-page-title-main">Absolute space and time</span> Theoretical foundation of Newtonian mechanics

Absolute space and time is a concept in physics and philosophy about the properties of the universe. In physics, absolute space and time may be a preferred frame.

The Pioneer anomaly, or Pioneer effect, was the observed deviation from predicted accelerations of the Pioneer 10 and Pioneer 11 spacecraft after they passed about 20 astronomical units (3×109 km; 2×109 mi) on their trajectories out of the Solar System. The apparent anomaly was a matter of much interest for many years but has been subsequently explained by anisotropic radiation pressure caused by the spacecraft's heat loss.


Stochastic electrodynamics (SED) is extends classical electrodynamics (CED) of theoretical physics by adding the hypothesis of a classical Lorentz invariant radiation field having statistical properties similar to that of the electromagnetic zero-point field (ZPF) of quantum electrodynamics (QED).

In 19th century physics, there were several situations in which the motion of matter might be said to drag light. This aether drag hypothesis was an attempt by classical physics to explain stellar aberration and the Fizeau experiment, but was discarded when Albert Einstein introduced his theory of relativity. Despite this, the expression light-dragging has remained in use somewhat, as discussed on this page.

A non-inertial reference frame is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion are the same in all inertial frames, in non-inertial frames, they vary from frame to frame depending on the acceleration.

Field propulsion is the concept of spacecraft propulsion where no propellant is necessary but instead momentum of the spacecraft is changed by an interaction of the spacecraft with external force fields, such as gravitational and magnetic fields from stars and planets. Proposed drives that use field propulsion are often called a reactionless or propellantless drive.

Modified Newtonian dynamics (MOND) is a hypothesis that proposes a modification of Newton's second law to account for observed properties of galaxies. It is supported by a minority of astrophysicists as an alternative to the more widely accepted hypothesis of dark matter in terms of explaining why galaxies do not appear to obey the currently understood laws of physics.

Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses causing that field may be non-static ⁠— rotating, for instance. More generally, the subject that deals with the effects caused by mass–energy currents is known as gravitoelectromagnetism, which is analogous to the magnetism of classical electromagnetism.

The Hoyle–Narlikar theory of gravity is a Machian and conformal theory of gravity proposed by Fred Hoyle and Jayant Narlikar that originally fits into the quasi steady state model of the universe.

References

  1. "Jim Woodward". Fullerton, department of physics. Retrieved 5 February 2013.
  2. Woodward, James F. (October 1990). "A new experimental approach to Mach's principle and relativistic gravitation" (PDF). Foundations of Physics Letters . 3 (5): 497–506. Bibcode:1990FoPhL...3..497W. doi:10.1007/bf00665932. S2CID   120603211. Archived from the original (PDF) on 2018-01-03. Retrieved 2017-04-29.
  3. Whealton, J. H.; McKeever, J. W.; Akerman, M. A.; Andriulli, J. B. (4 September 2001). "Revised Theory of Transient Mass Fluctuations" (PDF). United States Department of Energy. Archived from the original (PDF) on 29 November 2019. Retrieved 15 February 2015.
  4. Marini, Ricardo L.; Galian, Eugenio S. (November–December 2010). "Torsion Pendulum Investigation of Electromagnetic Inertia Manipulation Thrusting". Journal of Propulsion and Power. 26 (6): 1283–1290. doi:10.2514/1.46541.
  5. "The Space Show: Dr. James Woodward". The Space Show. Archived from the original on 2012-02-19.
  6. Woodward, James F. (April 1997). "Twists of fate: Can we make traversable wormholes in spacetime?" (PDF). Foundations of Physics Letters . 10 (2): 153–181. Bibcode:1997FoPhL..10..153W. doi:10.1007/BF02764237. S2CID   121164043 . Retrieved 5 February 2013.
  7. Woodward, James F. (2012). Making Starships and Stargates: The Science of Interstellar Transport and Absurdly Benign Wormholes. Springer Praxis Books. ISBN   978-1461456223.