Join point

Last updated

In computer science, a join point is a point in the control flow of a program where the control flow can arrive via two different paths. In particular, it's a basic block that has more than one predecessor. [1] In aspect-oriented programming a set of join points is called a pointcut. A join point is a specification of when, in the corresponding main program, the aspect code should be executed.

The join point is a point of execution in the base code where the advice specified in a corresponding pointcut is applied.

Conceptually, a join point exists where a precondition for a command in Hoare logic makes an assertion parametric upon the joint and several advice supplied by the different concerns at that point in a generalized abstract process, the unified thing composed from its concrete aspects being the pointcut.

See also

Related Research Articles

Procedural programming is a programming paradigm, derived from structured programming, based on the concept of the procedure call. Procedures, also known as routines, subroutines, or functions, simply contain a series of computational steps to be carried out. Any given procedure might be called at any point during a program's execution, including by other procedures or itself. The first major procedural programming languages appeared circa 1957–1964, including Fortran, ALGOL, COBOL, PL/I and BASIC. Pascal and C were published circa 1970–1972.

In software engineering and computer science, abstraction is:

In computing, aspect-oriented programming (AOP) is a programming paradigm that aims to increase modularity by allowing the separation of cross-cutting concerns. It does so by adding additional behavior to existing code without modifying the code itself, instead separately specifying which code is modified via a "pointcut" specification, such as "log all function calls when the function's name begins with 'set'". This allows behaviors that are not central to the business logic to be added to a program without cluttering the code, core to the functionality. AOP forms a basis for aspect-oriented software development.

In compiler construction, a basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit. This restricted form makes a basic block highly amenable to analysis. Compilers usually decompose programs into their basic blocks as a first step in the analysis process. Basic blocks form the vertices or nodes in a control flow graph.

In computer science, separation of concerns (SoC) is a design principle for separating a computer program into distinct sections such that each section addresses a separate concern. A concern is a set of information that affects the code of a computer program. A concern can be as general as "the details of the hardware for an application", or as specific as "the name of which class to instantiate". A program that embodies SoC well is called a modular program. Modularity, and hence separation of concerns, is achieved by encapsulating information inside a section of code that has a well-defined interface. Encapsulation is a means of information hiding. Layered designs in information systems are another embodiment of separation of concerns.

In aspect-oriented computer programming, a pointcut is a set of join points. Pointcut specifies where exactly to apply advice, this allows separation of concerns and helps in modularizing business logic. Pointcuts are often specified using class names or method names in some cases using regular expressions that match class or method name. Different frameworks support different Pointcut expressions, AspectJ syntax is considered as de facto standard. Frameworks are available for various programming languages like Java, Perl, Ruby, and many more which support pointcut.

AspectJ is an aspect-oriented programming (AOP) extension created at PARC for the Java programming language. It is available in Eclipse Foundation open-source projects, both stand-alone and integrated into Eclipse. AspectJ has become a widely used de facto standard for AOP by emphasizing simplicity and usability for end users. It uses Java-like syntax, and included IDE integrations for displaying crosscutting structure since its initial public release in 2001.

Software development is the process of conceiving, specifying, designing, programming, documenting, testing, and bug fixing involved in creating and maintaining applications, frameworks, or other software components. Software development is a process of writing and maintaining the source code, but in a broader sense, it includes all that is involved between the conception of the desired software through to the final manifestation of the software, sometimes in a planned and structured process. Therefore, software development may include research, new development, prototyping, modification, reuse, re-engineering, maintenance, or any other activities that result in software products.

Flowchart Diagram that represents a workflow or process

A flowchart is a type of diagram that represents a workflow or process. A flowchart can also be defined as a diagrammatic representation of an algorithm, a step-by-step approach to solving a task.

In computer programming, COMEFROM is an obscure control flow structure used in some programming languages, originally as a joke. COMEFROM is the inverse of GOTO in that it can take the execution state from any arbitrary point in code to a COMEFROM statement.

In aspect and functional programming, advice describes a class of functions which modify other functions when the latter are run; it is a certain function, method or procedure that is to be applied at a given join point of a program.

In software engineering, inversion of control (IoC) is a programming principle. IoC inverts the flow of control as compared to traditional control flow. In IoC, custom-written portions of a computer program receive the flow of control from a generic framework. A software architecture with this design inverts control as compared to traditional procedural programming: in traditional programming, the custom code that expresses the purpose of the program calls into reusable libraries to take care of generic tasks, but with inversion of control, it is the framework that calls into the custom, or task-specific, code.

In computer programming, data-driven programming is a programming paradigm in which the program statements describe the data to be matched and the processing required rather than defining a sequence of steps to be taken. Standard examples of data-driven languages are the text-processing languages sed and AWK, where the data is a sequence of lines in an input stream – these are thus also known as line-oriented languages – and pattern matching is primarily done via regular expressions or line numbers.

AspectC++ is an aspect-oriented extension of C and C++ languages. It has a source-to-source compiler, which translates AspectC++ source code into compilable C++. The compiler is available under the GNU GPL, though some extensions specific to Microsoft Windows are only available through pure-systems GmbH.

In computing, aspect-oriented software development (AOSD) is a software development technology that seeks new modularizations of software systems in order to isolate secondary or supporting functions from the main program's business logic. AOSD allows multiple concerns to be expressed separately and automatically unified into working systems.

In computing, subject-oriented programming is an object-oriented software paradigm in which the state (fields) and behavior (methods) of objects are not seen as intrinsic to the objects themselves, but are provided by various subjective perceptions (“subjects”) of the objects. The term and concepts were first published in September 1993 in a conference paper which was later recognized as being one of the three most influential papers to be presented at the conference between 1986 and 1996. As illustrated in that paper, an analogy is made with the contrast between the philosophical views of Plato and Kant with respect to the characteristics of “real” objects, but applied to software ones. For example, while we may all perceive a tree as having a measurable height, weight, leaf-mass, etc., from the point of view of a bird, a tree may also have measures of relative value for food or nesting purposes, or from the point of view of a tax-assessor, it may have a certain taxable value in a given year. Neither the bird’s nor the tax-assessor’s additional state information need be seen as intrinsic to the tree, but are added by the perceptions of the bird and tax-assessor, and from Kant’s analysis, the same may be true even of characteristics we think of as intrinsic.

Data, context, and interaction (DCI) is a paradigm used in computer software to program systems of communicating objects. Its goals are:

Aspect weaver metaprogramming utility for aspect-oriented languages designed to take instructions specified by aspects (isolated representations of significant concepts in a program) and generate the final implementation code

An aspect weaver is a metaprogramming utility for aspect-oriented languages designed to take instructions specified by aspects and generate the final implementation code. The weaver integrates aspects into the locations specified by the software as a pre-compilation step. By merging aspects and classes, the weaver generates a woven class.

In telecommunication, a communication protocol is a system of rules that allow two or more entities of a communications system to transmit information via any kind of variation of a physical quantity. The protocol defines the rules, syntax, semantics and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination of both.

Aspect-Oriented Programming (AOP) presents the principle of the separation of concerns, allowing less interdependence, and more transparency. Thereby, an aspect is a module that encapsulates a crosscutting concern, and it is composed of pointcuts and advice bodies. The interception of an aspect is performed in a join point, and defined inside a pointcut. Whenever the application execution reaches one pointcut, an advice associated with it is executed. However, this implementation does not take into account separation of concerns in distributed settings.

References

  1. Daniel), Cooper, Keith D. (Keith (2012). Engineering a compiler. Torczon, Linda. (2nd ed.). Amsterdam: Elsevier/Morgan Kaufmann. p. 476. ISBN   978-0120884780. OCLC   714113472.