Jupiter's North Pole

Last updated
Cyclone storms encircle Jupiter's North Pole, captured in infrared light by NASA's Juno spacecraft Cyclone storms encircle Jupiter's North Pole, captured in infrared light by NASA's Juno spacecraft.png
Cyclone storms encircle Jupiter's North Pole, captured in infrared light by NASA's Juno spacecraft

Jupiter's North Pole is the northernmost point of Jupiter. Like Jupiter's South Pole, it has a bluer surface color than the rest of Jupiter. It was first imaged in July 2016 with the Juno probe entering the polar orbit of Jupiter. At the same time, its polar cyclone was discovered, measuring just over 3,000 km, surrounded by eight smaller cyclones which each measure 2,400–2,800 km in diameter. They are almost half the size of the South Pole cyclones and form a close to regular eight-corner. All of them turn counterclockwise.

In contrast to the South Pole, where in 2019, to the five peripheral cyclones was added a sixth, at the North Pole, this structure of "1+8", at least until the end of 2020, remained stable. Its stability is provided by the tendency of peripheral cyclones to repel each other and move toward the pole, while the central cyclone tends to repel them all. [1]

Three peripheral cyclones (the second, sixth, and eighth) are close to the background in brightness, and the other five are lighter. Several smaller cyclones up to 1,000 km in diameter, some of which also rotate clockwise, circle around them.

The temperature of the upper atmosphere in this region ranges from −83 °C to −13 °C [2]

When the Juno arrived at Jupiter, its North Pole was in the darkness of polar night, so its first pictures were only infrared. Only when sunlight shifted to the Northern Hemisphere was it possible to see all its cyclones in the light of the Sun. To make one complete picture of the pole, the apparatus requires four approaches to it. [3]

At the North Pole of Jupiter there is a large X-ray spot, discovered in 2000, pulsating with a period of about 45 minutes (there is a much smaller similar spot at the South Pole). Explanations of this phenomenon have not yet been found. [4]

Citations

  1. Gavriel, Nimrod; Kaspi, Yohai (2021). "The number and location of Jupiter's circumpolar cyclones explained by vorticity dynamics". Nature Geoscience. 14 (8): 559–563. arXiv: 2110.09422 . Bibcode:2021NatGe..14..559G. doi:10.1038/s41561-021-00781-6. ISSN   1752-0908. S2CID   236096014.
  2. "Полет над северным полюсом Юпитера: видео". Популярная механика (in Russian). Retrieved 2021-11-13.
  3. "All Eight Northern Circumpolar Cyclones in 2020". NASA Jet Propulsion Laboratory (JPL). Retrieved 2021-11-13.
  4. "Астронет > Большое рентгеновское пятно на Юпитере". www.astronet.ru. Retrieved 2021-11-13.

Related Research Articles

<span class="mw-page-title-main">Declination</span> Astronomical coordinate analogous to latitude

In astronomy, declination is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. Declination's angle is measured north or south of the celestial equator, along the hour circle passing through the point in question.

<span class="mw-page-title-main">Jupiter</span> Fifth planet from the Sun

Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, and slightly less than one one-thousandth the mass of the Sun. Jupiter orbits the Sun at a distance of 5.20 AU (778.5 Gm) with an orbital period of 11.86 years. Jupiter is the third brightest natural object in the Earth's night sky after the Moon and Venus, and it has been observed since prehistoric times. It was named after Jupiter, the chief deity of ancient Roman religion.

<span class="mw-page-title-main">Cyclone</span> Large scale air mass that rotates around a strong center of low pressure

In meteorology, a cyclone is a large air mass that rotates around a strong center of low atmospheric pressure, counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere as viewed from above. Cyclones are characterized by inward-spiraling winds that rotate about a zone of low pressure. The largest low-pressure systems are polar vortices and extratropical cyclones of the largest scale. Warm-core cyclones such as tropical cyclones and subtropical cyclones also lie within the synoptic scale. Mesocyclones, tornadoes, and dust devils lie within the smaller mesoscale. Upper level cyclones can exist without the presence of a surface low, and can pinch off from the base of the tropical upper tropospheric trough during the summer months in the Northern Hemisphere. Cyclones have also been seen on extraterrestrial planets, such as Mars, Jupiter, and Neptune. Cyclogenesis is the process of cyclone formation and intensification. Extratropical cyclones begin as waves in large regions of enhanced mid-latitude temperature contrasts called baroclinic zones. These zones contract and form weather fronts as the cyclonic circulation closes and intensifies. Later in their life cycle, extratropical cyclones occlude as cold air masses undercut the warmer air and become cold core systems. A cyclone's track is guided over the course of its 2 to 6 day life cycle by the steering flow of the subtropical jet stream.

<span class="mw-page-title-main">Saturn</span> Sixth planet from the Sun

Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine-and-a-half times that of Earth. It has only one-eighth the average density of Earth, but is over 95 times more massive.

<span class="mw-page-title-main">Great Red Spot</span> Persistent storm in Jupiters atmosphere

The Great Red Spot is a persistent high-pressure region in the atmosphere of Jupiter, producing an anticyclonic storm that is the largest in the Solar System. It is the most recognizable feature on Jupiter, owing to its red-orange color whose origin is still unknown. Located 22 degrees south of Jupiter's equator, it produces wind-speeds up to 432 km/h (268 mph). Observations from 1665 to 1713 are believed to be of the same storm; if this is correct, it has existed for at least 358 years. It was next observed in September 1831, with 60 recorded observations between then and 1878, when continuous observations began.

<span class="mw-page-title-main">Circumpolar star</span> Star that never sets due to its apparent proximity to a celestial pole

A circumpolar star is a star that, as viewed from a given latitude on Earth, never sets below the horizon due to its apparent proximity to one of the celestial poles. Circumpolar stars are therefore visible from said location toward the nearest pole for the entire night on every night of the year. Others are called seasonal stars.

<span class="mw-page-title-main">Great Dark Spot</span> Large storm in Neptunes atmosphere

The Great Dark Spot was one of a series of dark spots on Neptune similar in appearance to Jupiter's Great Red Spot. In 1989, GDS-89 was the first Great Dark Spot on Neptune to be observed by NASA's Voyager 2 space probe. Like Jupiter's spot, Great Dark Spots are anticyclonic storms. However, their interiors are relatively cloud-free, and unlike Jupiter's spot, which has lasted for hundreds of years, their lifetimes appear to be shorter, forming and dissipating once every few years or so. Based on observations taken with Voyager 2 and since then with the Hubble Space Telescope, Neptune appears to spend somewhat more than half its time with a Great Dark Spot. Little is known about the origins, movement, and disappearance of the dark spots observed on the planet since 1989.

<span class="mw-page-title-main">Extraterrestrial sky</span> Extraterrestrial view of outer space

In astronomy, an extraterrestrial sky is a view of outer space from the surface of an astronomical body other than Earth.

<i>Juno</i> (spacecraft) NASA space probe orbiting the planet Jupiter

Juno is a NASA space probe orbiting the planet Jupiter. It was built by Lockheed Martin and is operated by NASA's Jet Propulsion Laboratory. The spacecraft was launched from Cape Canaveral Air Force Station on August 5, 2011 UTC, as part of the New Frontiers program. Juno entered a polar orbit of Jupiter on July 5, 2016, UTC, to begin a scientific investigation of the planet. After completing its mission, Juno will be intentionally deorbited into Jupiter's atmosphere.

<span class="mw-page-title-main">Planum Boreum</span> Planum on Mars

Planum Boreum is the northern polar plain on Mars. It extends northward from roughly 80°N and is centered at 88.0°N 15.0°E. Surrounding the high polar plain is a flat and featureless lowland plain called Vastitas Borealis which extends for approximately 1500 kilometers southwards, dominating the northern hemisphere.

<span class="mw-page-title-main">Magnetosphere of Jupiter</span> Cavity created in the solar wind

The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field. Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar System after the heliosphere. Wider and flatter than the Earth's magnetosphere, Jupiter's is stronger by an order of magnitude, while its magnetic moment is roughly 18,000 times larger. The existence of Jupiter's magnetic field was first inferred from observations of radio emissions at the end of the 1950s and was directly observed by the Pioneer 10 spacecraft in 1973.

An extraterrestrial vortex is a vortex that occurs on planets and natural satellites other than Earth that have sufficient atmospheres. Most observed extraterrestrial vortices have been seen in large cyclones, or anticyclones. However, occasional dust storms have been known to produce vortices on Mars and Titan. Various spacecraft missions have recorded evidence of past and present extraterrestrial vortices. The largest extraterrestrial vortices are found on the gas giants, Jupiter and Saturn, and the ice giants, Uranus and Neptune.

<span class="mw-page-title-main">Exploration of Jupiter</span> Overview of the exploration of Jupiter the planet and its moons

The exploration of Jupiter has been conducted via close observations by automated spacecraft. It began with the arrival of Pioneer 10 into the Jovian system in 1973, and, as of 2023, has continued with eight further spacecraft missions in the vicinity of Jupiter. All of these missions were undertaken by the National Aeronautics and Space Administration (NASA), and all but two were flybys taking detailed observations without landing or entering orbit. These probes make Jupiter the most visited of the Solar System's outer planets as all missions to the outer Solar System have used Jupiter flybys. On 5 July 2016, spacecraft Juno arrived and entered the planet's orbit—the second craft ever to do so. Sending a craft to Jupiter is difficult, mostly due to large fuel requirements and the effects of the planet's harsh radiation environment.

<span class="mw-page-title-main">Exploration of Io</span> Overview of the exploration of Io, Jupiters innermost Galilean and third-largest moon

The exploration of Io, Jupiter's innermost Galilean and third-largest moon, began with its discovery in 1610 and continues today with Earth-based observations and visits by spacecraft to the Jupiter system. Italian astronomer Galileo Galilei was the first to record an observation of Io on January 8, 1610, though Simon Marius may have also observed Io at around the same time. During the 17th century, observations of Io and the other Galilean satellites helped with the measurement of longitude by map makers and surveyors, with validation of Kepler's Third Law of planetary motion, and with measurement of the speed of light. Based on ephemerides produced by astronomer Giovanni Cassini and others, Pierre-Simon Laplace created a mathematical theory to explain the resonant orbits of three of Jupiter's moons, Io, Europa, and Ganymede. This resonance was later found to have a profound effect on the geologies of these moons. Improved telescope technology in the late 19th and 20th centuries allowed astronomers to resolve large-scale surface features on Io as well as to estimate its diameter and mass.

JunoCam is the visible-light camera/telescope onboard NASA's Juno spacecraft currently orbiting Jupiter. The camera is operated by the JunoCam Digital Electronics Assembly (JDEA). Both the camera and JDEA were built by Malin Space Science Systems. JunoCam takes a swath of imaging as the spacecraft rotates; the camera is fixed to the spacecraft, so as it rotates, it gets one sweep of observation. It has a field of view of 58 degrees with four filters.

<span class="mw-page-title-main">Atmosphere of Jupiter</span> Layer of gases surrounding the planet Jupiter

The atmosphere of Jupiter is the largest planetary atmosphere in the Solar System. It is mostly made of molecular hydrogen and helium in roughly solar proportions; other chemical compounds are present only in small amounts and include methane, ammonia, hydrogen sulfide, and water. Although water is thought to reside deep in the atmosphere, its directly measured concentration is very low. The nitrogen, sulfur, and noble gas abundances in Jupiter's atmosphere exceed solar values by a factor of about three.

<span class="mw-page-title-main">Jovian Infrared Auroral Mapper</span>

Jovian Infrared Auroral Mapper (JIRAM) is an instrument on the Juno spacecraft in orbit of the planet Jupiter. It is an image spectrometer and was contributed by Italy. Similar instruments are on ESA Rosetta, Venus Express, and Cassini-Huygens missions. The primary goal of JIRAM is to probe the upper layers of Jupiter's atmosphere down to pressures of 5–7 bars at infrared wavelengths in the 2–5 μm interval using an imager and a spectrometer. The Jupiter's atmosphere and auroral regions are targeted for study. In particular it has been designed to study the dynamics and chemistry in the atmosphere, perhaps determining the how Jovian hot spots form.

<span class="mw-page-title-main">Saturn's hexagon</span> Hexagonal cloud pattern around north pole of Saturn

Saturn's hexagon is a persistent approximately hexagonal cloud pattern around the north pole of the planet Saturn, located at about 78°N. The sides of the hexagon are about 14,500 km (9,000 mi) long, which is about 2,000 km (1,200 mi) longer than the diameter of Earth. The hexagon may be a bit more than 29,000 km (18,000 mi) wide, may be 300 km (190 mi) high, and may be a jet stream made of atmospheric gases moving at 320 km/h (200 mph). It rotates with a period of 10h 39m 24s, the same period as Saturn's radio emissions from its interior. The hexagon does not shift in longitude like other clouds in the visible atmosphere.

Microwave Radiometer (<i>Juno</i>)

Microwave Radiometer (MWR) is an instrument on the Juno orbiter sent to planet Jupiter. MWR is a multi-wavelength microwave radiometer for making observations of Jupiter's deep atmosphere. MWR can observe radiation from 1.37 to 50 cm in wavelength, from 600 MHz to 22 GHz in frequencies. This supports its goal of observing the previously unseen atmospheric features and chemical abundances hundreds of miles/km into Jupiter's atmosphere. MWR is designed to detect six different frequencies in that range using separate antennas.

<span class="mw-page-title-main">Jupiter's South Pole</span> Jupiters South pole

For the first time the South Pole of Jupiter was photographed in detail by the Juno spacecraft, which arrived to Jupiter in July 2016 and for the first time in history entered the polar orbit of Jupiter. At the same time, six cyclones were discovered at the South Pole: Оne in the center and five around it, each about 4,500 km in diameter, with a wind speed of about 360 km/h, and all of them twisted clockwise. A similar picture at the North Pole of Jupiter presents nine cyclones of similar size: one in the center, and eight around it, rotating counterclockwise.