Knowledge acquisition

Last updated

Knowledge acquisition is the process used to define the rules and ontologies required for a knowledge-based system. The phrase was first used in conjunction with expert systems to describe the initial tasks associated with developing an expert system, namely finding and interviewing domain experts and capturing their knowledge via rules, objects, and frame-based ontologies.

Expert systems were one of the first successful applications of artificial intelligence technology to real world business problems. [1] Researchers at Stanford and other AI laboratories worked with doctors and other highly skilled experts to develop systems that could automate complex tasks such as medical diagnosis. Until this point computers had mostly been used to automate highly data intensive tasks but not for complex reasoning. Technologies such as inference engines allowed developers for the first time to tackle more complex problems. [2] [3]

As expert systems scaled up from demonstration prototypes to industrial strength applications it was soon realized that the acquisition of domain expert knowledge was one of if not the most critical task in the knowledge engineering process. This knowledge acquisition process became an intense area of research on its own. One of the earlier works [4] on the topic used Batesonian theories of learning to guide the process.

One approach to knowledge acquisition investigated was to use natural language parsing and generation to facilitate knowledge acquisition. Natural language parsing could be performed on manuals and other expert documents and an initial first pass at the rules and objects could be developed automatically. Text generation was also extremely useful in generating explanations for system behavior. This greatly facilitated the development and maintenance of expert systems. [5]

A more recent approach to knowledge acquisition is a re-use based approach. Knowledge can be developed in ontologies that conform to standards such as the Web Ontology Language (OWL). [6] In this way knowledge can be standardized and shared across a broad community of knowledge workers. One example domain where this approach has been successful is bioinformatics. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Expert system</span> Computer system emulating the decision-making ability of a human expert

In artificial intelligence, an expert system is a computer system emulating the decision-making ability of a human expert. Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural code. The first expert systems were created in the 1970s and then proliferated in the 1980s. Expert systems were among the first truly successful forms of artificial intelligence (AI) software. An expert system is divided into two subsystems: the inference engine and the knowledge base. The knowledge base represents facts and rules. The inference engine applies the rules to the known facts to deduce new facts. Inference engines can also include explanation and debugging abilities.

<span class="mw-page-title-main">Knowledge representation and reasoning</span> Field of artificial intelligence

Knowledge representation and reasoning is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.

<span class="mw-page-title-main">Natural language processing</span> Field of linguistics and computer science

Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.

In computer science and information science, an ontology encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains of discourse. More simply, an ontology is a way of showing the properties of a subject area and how they are related, by defining a set of concepts and categories that represent the subject.

Natural-language understanding (NLU) or natural-language interpretation (NLI) is a subtopic of natural-language processing in artificial intelligence that deals with machine reading comprehension. Natural-language understanding is considered an AI-hard problem.

<span class="mw-page-title-main">Symbolic artificial intelligence</span> Methods in artificial intelligence research

In artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems, symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems. The Symbolic AI paradigm led to seminal ideas in search, symbolic programming languages, agents, multi-agent systems, the semantic web, and the strengths and limitations of formal knowledge and reasoning systems.

Question answering (QA) is a computer science discipline within the fields of information retrieval and natural language processing (NLP) that is concerned with building systems that automatically answer questions that are posed by humans in a natural language.

Knowledge engineering (KE) refers to all technical, scientific and social aspects involved in building, maintaining and using knowledge-based systems.

A knowledge-based system (KBS) is a computer program that reasons and uses a knowledge base to solve complex problems. The term is broad and refers to many different kinds of systems. The one common theme that unites all knowledge based systems is an attempt to represent knowledge explicitly and a reasoning system that allows it to derive new knowledge. Thus, a knowledge-based system has two distinguishing features: a knowledge base and an inference engine.

Legal informatics is an area within information science.

Knowledge-based engineering (KBE) is the application of knowledge-based systems technology to the domain of manufacturing design and production. The design process is inherently a knowledge-intensive activity, so a great deal of the emphasis for KBE is on the use of knowledge-based technology to support computer-aided design (CAD) however knowledge-based techniques can be applied to the entire product lifecycle.

Intelligent Computer Assisted Language Learning (ICALL), or Intelligent Computer Assisted Language Instruction (ICALI), involves the application of computing technologies to the teaching and learning of second or foreign languages. ICALL combines Artificial intelligence with Computer Assisted Language Learning (CALL) systems to provide software that interacts intelligently with students, responding flexibly and dynamically to student's learning progress.

The concept of the Social Semantic Web subsumes developments in which social interactions on the Web lead to the creation of explicit and semantically rich knowledge representations. The Social Semantic Web can be seen as a Web of collective knowledge systems, which are able to provide useful information based on human contributions and which get better as more people participate. The Social Semantic Web combines technologies, strategies and methodologies from the Semantic Web, social software and the Web 2.0.

<span class="mw-page-title-main">Ontology learning</span> Automatic creation of ontologies

Ontology learning is the automatic or semi-automatic creation of ontologies, including extracting the corresponding domain's terms and the relationships between the concepts that these terms represent from a corpus of natural language text, and encoding them with an ontology language for easy retrieval. As building ontologies manually is extremely labor-intensive and time-consuming, there is great motivation to automate the process.

<span class="mw-page-title-main">Ontology engineering</span> Field which studies the methods and methodologies for building ontologies

In computer science, information science and systems engineering, ontology engineering is a field which studies the methods and methodologies for building ontologies, which encompasses a representation, formal naming and definition of the categories, properties and relations between the concepts, data and entities. In a broader sense, this field also includes a knowledge construction of the domain using formal ontology representations such as OWL/RDF. A large-scale representation of abstract concepts such as actions, time, physical objects and beliefs would be an example of ontological engineering. Ontology engineering is one of the areas of applied ontology, and can be seen as an application of philosophical ontology. Core ideas and objectives of ontology engineering are also central in conceptual modeling.

Knowledge extraction is the creation of knowledge from structured and unstructured sources. The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing. Although it is methodically similar to information extraction (NLP) and ETL, the main criterion is that the extraction result goes beyond the creation of structured information or the transformation into a relational schema. It requires either the reuse of existing formal knowledge or the generation of a schema based on the source data.

In information technology a reasoning system is a software system that generates conclusions from available knowledge using logical techniques such as deduction and induction. Reasoning systems play an important role in the implementation of artificial intelligence and knowledge-based systems.

The following outline is provided as an overview of and topical guide to natural-language processing:

Automatic taxonomy construction (ATC) is the use of software programs to generate taxonomical classifications from a body of texts called a corpus. ATC is a branch of natural language processing, which in turn is a branch of artificial intelligence.

<span class="mw-page-title-main">Glossary of artificial intelligence</span> List of definitions of terms and concepts commonly used in the study of artificial intelligence

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

References

  1. Russell, Stuart; Norvig, Peter (1995). Artificial Intelligence: A Modern Approach (PDF). Simon & Schuster. pp. 22–23. ISBN   978-0-13-103805-9. Archived from the original (PDF) on 5 May 2014. Retrieved 14 June 2014.
  2. Kendal, S.L.; Creen, M. (2007), An introduction to knowledge engineering, London: Springer, ISBN   978-1-84628-475-5, OCLC   70987401
  3. Feigenbaum, Edward A.; McCorduck, Pamela (1983), The fifth generation (1st ed.), Reading, MA: Addison-Wesley, ISBN   978-0-201-11519-2, OCLC   9324691
  4. Brule, J.F.; Blount, A.F. (1989), Knowledge Acquisition , NY: McGraw Hill, ISBN   978-0-07-008600-5, OCLC   21367222
  5. Potter, Steven. "A Survey of Knowledge Acquisition from Natural Language" (PDF). Technology Maturity Assessment (TMA). Retrieved 9 July 2014.
  6. Schreiber, Guus (25 September 2012). "Knowledge acquisition and the web" (PDF). International Journal of Human-Computer Studies. Elsevior (71): 206–210. Retrieved 5 March 2017.
  7. Goble, Carole (2008). "State of the nation in data integration for bioinformatics". Journal of Biomedical Informatics. 41 (5): 687–693. doi: 10.1016/j.jbi.2008.01.008 . PMID   18358788.