Kurosh subgroup theorem

Last updated

In the mathematical field of group theory, the Kurosh subgroup theorem describes the algebraic structure of subgroups of free products of groups. The theorem was obtained by Alexander Kurosh, a Russian mathematician, in 1934. [1] Informally, the theorem says that every subgroup of a free product is itself a free product of a free group and of its intersections with the conjugates of the factors of the original free product.

Contents

History and generalizations

After the original 1934 proof of Kurosh, there were many subsequent proofs of the Kurosh subgroup theorem, including proofs of Harold W. Kuhn (1952), [2] Saunders Mac Lane (1958) [3] and others. The theorem was also generalized for describing subgroups of amalgamated free products and HNN extensions. [4] [5] Other generalizations include considering subgroups of free pro-finite products [6] and a version of the Kurosh subgroup theorem for topological groups. [7]

In modern terms, the Kurosh subgroup theorem is a straightforward corollary of the basic structural results of Bass–Serre theory about groups acting on trees. [8]

Statement of the theorem

Let be the free product of groups A and B and let be a subgroup of G. Then there exist a family of subgroups , a family of subgroups , families and of elements of G, and a subset such that

This means that Xfreely generates a subgroup of G isomorphic to the free group F(X) with free basis X and that, moreover, giAigi−1, fjBjfj−1 and X generate H in G as a free product of the above form.

There is a generalization of this to the case of free products with arbitrarily many factors. [9] Its formulation is:

If H is a subgroup of ∗i∈IGi = G, then

where XG and J is some index set and gjG and each Hj is a subgroup of some Gi.

Proof using Bass–Serre theory

The Kurosh subgroup theorem easily follows from the basic structural results in Bass–Serre theory, as explained, for example in the book of Cohen (1987): [8]

Let G = AB and consider G as the fundamental group of a graph of groups Y consisting of a single non-loop edge with the vertex groups A and B and with the trivial edge group. Let X be the Bass–Serre universal covering tree for the graph of groups Y. Since HG also acts on X, consider the quotient graph of groups Z for the action of H on X. The vertex groups of Z are subgroups of G-stabilizers of vertices of X, that is, they are conjugate in G to subgroups of A and B. The edge groups of Z are trivial since the G-stabilizers of edges of X were trivial. By the fundamental theorem of Bass–Serre theory, H is canonically isomorphic to the fundamental group of the graph of groups Z. Since the edge groups of Z are trivial, it follows that H is equal to the free product of the vertex groups of Z and the free group F(X) which is the fundamental group (in the standard topological sense) of the underlying graph Z of Z. This implies the conclusion of the Kurosh subgroup theorem.

Extension

The result extends to the case that G is the amalgamated product along a common subgroup C, under the condition that H meets every conjugate of C only in the identity element. [10]

See also

Related Research Articles

In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism, every characteristic subgroup is normal; though the converse is not guaranteed. Examples of characteristic subgroups include the commutator subgroup and the center of a group.

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

<span class="mw-page-title-main">Free group</span> Mathematics concept

In mathematics, the free groupFS over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms. The members of S are called generators of FS, and the number of generators is the rank of the free group. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in exactly one way as a product of finitely many elements of S and their inverses.

In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs.

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group GH. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from GH to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group.

In mathematics, the HNN extension is an important construction of combinatorial group theory.

In mathematics, in the field of group theory, a subgroup of a group is termed malnormal if for any in but not in , and intersect in the identity element.

In mathematics, in the realm of group theory, a countable group is said to be SQ-universal if every countable group can be embedded in one of its quotient groups. SQ-universality can be thought of as a measure of largeness or complexity of a group.

In geometric group theory, a graph of groups is an object consisting of a collection of groups indexed by the vertices and edges of a graph, together with a family of monomorphisms of the edge groups into the vertex groups. There is a unique group, called the fundamental group, canonically associated to each finite connected graph of groups. It admits an orientation-preserving action on a tree: the original graph of groups can be recovered from the quotient graph and the stabilizer subgroups. This theory, commonly referred to as Bass–Serre theory, is due to the work of Hyman Bass and Jean-Pierre Serre.

<span class="mw-page-title-main">Lattice (discrete subgroup)</span>

In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.

In mathematics, especially in the area of abstract algebra known as combinatorial group theory, Nielsen transformations, named after Jakob Nielsen, are certain automorphisms of a free group which are a non-commutative analogue of row reduction and one of the main tools used in studying free groups,. They were introduced in to prove that every subgroup of a free group is free, but are now used in a variety of mathematics, including computational group theory, k-theory, and knot theory. The textbook devotes all of chapter 3 to Nielsen transformations.

In group theory, a branch of mathematics, the Nielsen–Schreier theorem states that every subgroup of a free group is itself free. It is named after Jakob Nielsen and Otto Schreier.

Bass–Serre theory is a part of the mathematical subject of group theory that deals with analyzing the algebraic structure of groups acting by automorphisms on simplicial trees. The theory relates group actions on trees with decomposing groups as iterated applications of the operations of free product with amalgamation and HNN extension, via the notion of the fundamental group of a graph of groups. Bass–Serre theory can be regarded as one-dimensional version of the orbifold theory.

In the mathematical subject of group theory, the Grushko theorem or the Grushko–Neumann theorem is a theorem stating that the rank of a free product of two groups is equal to the sum of the ranks of the two free factors. The theorem was first obtained in a 1940 article of Grushko and then, independently, in a 1943 article of Neumann.

<span class="mw-page-title-main">John R. Stallings</span> American mathematician

John Robert Stallings Jr. was a mathematician known for his seminal contributions to geometric group theory and 3-manifold topology. Stallings was a Professor Emeritus in the Department of Mathematics at the University of California at Berkeley where he had been a faculty member since 1967. He published over 50 papers, predominantly in the areas of geometric group theory and the topology of 3-manifolds. Stallings' most important contributions include a proof, in a 1960 paper, of the Poincaré Conjecture in dimensions greater than six and a proof, in a 1971 paper, of the Stallings theorem about ends of groups.

In the mathematical subject of group theory, the Stallings theorem about ends of groups states that a finitely generated group has more than one end if and only if the group admits a nontrivial decomposition as an amalgamated free product or an HNN extension over a finite subgroup. In the modern language of Bass–Serre theory the theorem says that a finitely generated group has more than one end if and only if admits a nontrivial action on a simplicial tree with finite edge-stabilizers and without edge-inversions.

In the mathematical subject of group theory, a one-relator group is a group given by a group presentation with a single defining relation. One-relator groups play an important role in geometric group theory by providing many explicit examples of finitely presented groups.

In mathematics, the Muller–Schupp theorem states that a finitely generated group G has context-free word problem if and only if G is virtually free. The theorem was proved by David Muller and Paul Schupp in 1983.

In the mathematical subject of group theory, the Howson property, also known as the finitely generated intersection property (FGIP), is the property of a group saying that the intersection of any two finitely generated subgroups of this group is again finitely generated. The property is named after Albert G. Howson who in a 1954 paper established that free groups have this property.

References

  1. Alexander Kurosh, Die Untergruppen der freien Produkte von beliebigen Gruppen. Mathematische Annalen, vol. 109 (1934), pp. 647–660.
  2. Harold W. Kuhn. Subgroup theorems for groups presented by generators and relations. Annals of Mathematics (2), 56 (1952), 22–46
  3. Saunders Mac Lane, A proof of the subgroup theorem for free products, Mathematika, 5 (1958), 13–19
  4. Abraham Karrass and Donald Solitar, The subgroups of a free product of two groups with an amalgamated subgroup. Transactions of the American Mathematical Society, vol. 150 (1970), pp. 227–255.
  5. Abraham Karrass and Donald Solitar, Subgroups of HNN groups and groups with one defining relation. Canadian Journal of Mathematics, 23 (1971), 627–643.
  6. Zalesskii, Pavel Aleksandrovich (1990). "[Open subgroups of free profinite products over a profinite space of indices]". Doklady Akademii Nauk SSSR (in Russian). 34 (1): 17–20.
  7. Peter Nickolas, A Kurosh subgroup theorem for topological groups. Proceedings of the London Mathematical Society (3), 42 (1981), no. 3, 461–477. MR 0614730
  8. 1 2 Daniel E. Cohen. Combinatorial group theory: a topological approach. London Mathematical Society Student Texts, 14. Cambridge University Press, Cambridge, 1989. ISBN   0-521-34133-7; 0-521-34936-2
  9. William S. Massey, Algebraic topology: an introduction, Graduate Texts in Mathematics, Springer-Verlag, New York, 1977, ISBN   0-387-90271-6; pp. 218225
  10. Serre, Jean-Pierre (2003). Trees. Springer. pp. 56–57. ISBN   3-540-44237-5.