LED strip light

Last updated
LED strip light
Passenger Experience Week 2018, Hamburg (1X7A3748).jpg
Several LED spots being reflected as continuous lighting strip
Type LEDstrip light
First production Early 2000s

An LED strip, tape, or ribbon light is a flexible circuit board populated by surface-mount light-emitting diodes (SMD LEDs) and other components that usually comes with an adhesive backing. Traditionally, strip lights had been used solely in accent lighting, backlighting, task lighting, and decorative lighting applications, such as cove lighting.

Contents

LED strip lights originated in the early 2000s. Since then, increased luminous efficacy and higher-power SMDs have allowed them to be used in applications such as high brightness task lighting, fluorescent and halogen lighting fixture replacements, indirect lighting applications, ultraviolet inspection during manufacturing processes, set and costume design, and growing plants.

Design

Correlated color temperatures of white light LED strip lighting Correlated Color Temperatures CCTs.png
Correlated color temperatures of white light

Variables in strip lighting consist of water resistance, color, adhesives, choice of SMD, driving voltage, control type, and whether it is constant current or constant voltage layout.

Uncoated LED tape is not considered to have any resistance to water ingress, but may be rated with an ingress protection code as IP20 for some physical ingress resistance. Such tapes are generally low voltage and safe for skin to touch but can be shorted by fine metal objects. Water resistant strip lighting is covered in a heat conducting epoxy or silicone to protect the circuitry from direct contact with water, and can be rated IP65, IP67, or with suitable sealed connections IP68. Both coated and uncoated LED tapes have a two sided adhesive backing to stick to walls, desks, doors, etc.

The most common design differences are in how individual LEDs are controlled, specifically differences in color and whether or not each LED is addressable. [1]

Blue LED strip light LED light strip.jpg
Blue LED strip light

LED strip designs are available populated with many different types of SMD, not only in different colors and addressable or non-addressable, by different shapes, sizes, and power levels. The most common types of SMD are: 3528, single colour, non-addressable, very low power; 5050, containing three LEDs allowing for RGB and addressable strips as well as higher power levels; 2835, a newer single-color SMD having the same surface dimensions as the 3528 but a larger emitter area and a thinner design with an integrated heatsink allowing for higher power levels; 5630/5730, a newer replacement for single-color 5050 SMDs which can operate at slightly higher power levels and have high efficacy. Less common designs may have 3014, 4014, 7020, 8020, or other SMDs. In addition to the LED SMD type, the quantity of LEDs per meter is also an important factor in determining the overall power and brightness. [5]

LED strip lights most commonly operate on 12 or 24 volts of direct current from a power supply, sometimes referred to as a driver. USB strip lights operate on the standard 5-volt direct current used by USB devices. Mains voltage LED strips are also available. These have the advantages of being usable in much longer single runs without a brightness drop along the length, but are less flexible and heavier due to higher voltage and current ratings and thick coatings for shock safety and high IP ratings in their intended outdoor positions, with limited cut points. No separate power supply is needed, although there must be a rectifier between the mains supply and the end of the LED strip. The most common PCB designs use multiple parallel circuits consisting of passive dropper resistors in series with a certain number of LED SMDs, to operate at a certain current and power level with the expected input voltage. This design is referred to as constant-voltage and is rather sensitive to small variations in input voltage and to the voltage drop that occurs along long lengths of strip when driven from a single power input. Alternative design is the "constant current" design where each parallel circuit of several SMDs includes a small integrated circuit to provide a fixed current to that group of LEDs, within a wide range of applied voltages. This allows the strip to operate at the same power level and brightness along its entire length, or with some variation in the driver voltage.[ citation needed ]

Any customizations require an LED controller to adjust brightness, color, or individual LED activity. This can be done with an included controller or customized with a microcontroller. [1]

LED strips can also be used to resemble the appearance of traditional neon lights. The LED tape is embedded on the side of a silicone filled, plastic C-channel; the silicone both diffuses the light from the LED tape and directs it out to one side, 90 degrees to the direction the SMD LEDs face. This design allows the lights to be bent in what appears to be the opposite direction to how regular LED tape can be bent, allowing one to spell words and create pictures with it much like neon signs. [6]

Beam angle

Some LEDs are rated as having a 120° beam angle, [7] directed "up", i.e. perpendicular to the mounting surface. 'Side view' or 'edge emitter' SMDs are designed such that light is emitted parallel to the adhering surface (i.e., 90 degree difference to typical tape design). These allow the construction of LED strips which wash surfaces within less space or accent edge profiles such as signage.[ citation needed ]

Dimming

LEDs can be dimmed efficiently using pulse-width modulation (PWM). This strategy rapidly switches the LEDs on and off, typically 500 times per second, by changing the voltage from zero to the designed value in an "on-off" fashion. The LED sees its drive as a square wave. The relative width of the on and off portions of the square wave can be varied so that the LEDs are on or off for relatively more or less time to change brightness. [8] Addressable LEDs do this dimming internally given a data signal which specifies which colour LEDs to turn on, while non-addressable LEDs require an external PWM controller.

Applications

Video of a bias lighting system with an LED strip light mounted all around the edges at the rear side of a flat screen television set, for extending the picture on the screen to the surrounding walls

Strip lights are designed for both indoor and outdoor use depending on whether they are water resistant. Since the strip is flexible and can be divided at any point between LEDs, it is extremely versatile and can be used in a number of installations. Outside of traditional lighting, strip lighting is extensively used in DIY projects or lighted clothing. The ability to power strip lights off of a USB device or battery pack makes them extremely portable. Examples include computer lighting, costume lights, toys, workspace lighting, monitor and display ambient lighting, and alcove lighting.

Popularity

During the early 2020s, LED strip lights gained popularity among users on the social media platform TikTok. [9] [10]

Related Research Articles

<span class="mw-page-title-main">Color temperature</span> Property of light sources related to black-body radiation

Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non-reflective body. The temperature of the ideal emitter that matches the color most closely is defined as the color temperature of the original visible light source. Color temperature is usually measured in kelvins. The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different temperature.

<span class="mw-page-title-main">Light-emitting diode</span> Semiconductor and solid-state light source

A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light is determined by the energy required for electrons to cross the band gap of the semiconductor. White light is obtained by using multiple semiconductors or a layer of light-emitting phosphor on the semiconductor device.

<span class="mw-page-title-main">Stage lighting</span> Craft of lighting at performances

Stage lighting is the craft of lighting as it applies to the production of theater, dance, opera, and other performance arts. Several different types of stage lighting instruments are used in this discipline. In addition to basic lighting, modern stage lighting can also include special effects, such as lasers and fog machines. People who work on stage lighting are commonly referred to as lighting technicians or lighting designers.

<span class="mw-page-title-main">Electroluminescence</span> Optical and electrical phenomenon

Electroluminescence (EL) is an optical and electrical phenomenon, in which a material emits light in response to the passage of an electric current or to a strong electric field. This is distinct from black body light emission resulting from heat (incandescence), chemical reactions (chemiluminescence), reactions in a liquid (electrochemiluminescence), sound (sonoluminescence), or other mechanical action (mechanoluminescence).

Gamma correction or gamma is a nonlinear operation used to encode and decode luminance or tristimulus values in video or still image systems. Gamma correction is, in the simplest cases, defined by the following power-law expression:

<span class="mw-page-title-main">Fluorescent lamp</span> Lamp using fluorescence to produce light

A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet light that then causes a phosphor coating on the inside of the lamp to glow. A fluorescent lamp converts electrical energy into useful light much more efficiently than an incandescent lamp. The typical luminous efficacy of fluorescent lighting systems is 50–100 lumens per watt, several times the efficacy of incandescent bulbs with comparable light output. For comparison, the luminous efficacy of an incandescent bulb may only be 16 lumens per watt.

<span class="mw-page-title-main">Lighting</span> Deliberate use of light to achieve practical or aesthetic effects

Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylight. Daylighting is sometimes used as the main source of light during daytime in buildings. This can save energy in place of using artificial lighting, which represents a major component of energy consumption in buildings. Proper lighting can enhance task performance, improve the appearance of an area, or have positive psychological effects on occupants.

<span class="mw-page-title-main">Neon lamp</span> Light source based on gas discharge

A neon lamp is a miniature gas-discharge lamp. The lamp typically consists of a small glass capsule that contains a mixture of neon and other gases at a low pressure and two electrodes. When sufficient voltage is applied and sufficient current is supplied between the electrodes, the lamp produces an orange glow discharge. The glowing portion in the lamp is a thin region near the cathode; the larger and much longer neon signs are also glow discharges, but they use the positive column which is not present in the ordinary neon lamp. Neon glow lamps were widely used as indicator lamps in the displays of electronic instruments and appliances. They are still sometimes used for their electrical simplicity in high-voltage circuits.

<span class="mw-page-title-main">Neon sign</span> Electrified, luminous tube lights

In the signage industry, neon signs are electric signs lighted by long luminous gas-discharge tubes that contain rarefied neon or other gases. They are the most common use for neon lighting, which was first demonstrated in a modern form in December 1910 by Georges Claude at the Paris Motor Show. While they are used worldwide, neon signs were popular in the United States from about the 1920s to 1950s. The installations in Times Square, many originally designed by Douglas Leigh, were famed, and there were nearly 2,000 small shops producing neon signs by 1940. In addition to signage, neon lighting is used frequently by artists and architects, and in plasma display panels and televisions. The signage industry has declined in the past several decades, and cities are now concerned with preserving and restoring their antique neon signs.

<span class="mw-page-title-main">Sodium-vapor lamp</span> Type of electric gas-discharge lamp

A sodium-vapor lamp is a gas-discharge lamp that uses sodium in an excited state to produce light at a characteristic wavelength near 589 nm.

<span class="mw-page-title-main">High-intensity discharge lamp</span> Type of electric lamp/bulb

High-intensity discharge lamps are a type of electrical gas-discharge lamp which produces light by means of an electric arc between tungsten electrodes housed inside a translucent or transparent fused quartz or fused alumina arc tube. This tube is filled with noble gas and often also contains suitable metal or metal salts. The noble gas enables the arc's initial strike. Once the arc is started, it heats and evaporates the metallic admixture. Its presence in the arc plasma greatly increases the intensity of visible light produced by the arc for a given power input, as the metals have many emission spectral lines in the visible part of the spectrum. High-intensity discharge lamps are a type of arc lamp.

<span class="mw-page-title-main">Bicycle lighting</span> Illumination devices attached to bicycles

Bicycle lighting is illumination attached to bicycles whose purpose above all is, along with reflectors, to improve the visibility of the bicycle and its rider to other road users under circumstances of poor ambient illumination. A secondary purpose is to illuminate reflective materials such as cat's eyes and traffic signs. A third purpose may be to illuminate the roadway so that the rider can see the way ahead. Serving the latter purposes require much more luminous flux and thus more power.

<span class="mw-page-title-main">Architectural lighting design</span> Field within architecture, interior design and electrical engineering

Architectural lighting design is a field of work or study that is concerned with the design of lighting systems within the built environment, both interior and exterior. It can include manipulation and design of both daylight and electric light or both, to serve human needs.

<span class="mw-page-title-main">Digital Addressable Lighting Interface</span> Trademark for network-based product

Digital Addressable Lighting Interface (DALI) is a trademark for network-based products that control lighting. The underlying technology was established by a consortium of lighting equipment manufacturers as a successor for 1-10 V/0–10 V lighting control systems, and as an open standard alternative to several proprietary protocols. The DALI, DALI-2 and D4i trademarks are owned by the lighting industry alliance, DiiA.

<span class="mw-page-title-main">Multifaceted reflector</span> Light bulb

A multifaceted reflector light bulb is a reflector housing format for halogen as well as some LED and fluorescent lamps. MR lamps were originally designed for use in slide projectors, but see use in residential lighting and retail lighting as well. They are suited to applications that require directional lighting such as track lighting, recessed ceiling lights, desk lamps, pendant fixtures, landscape lighting, retail display lighting, and bicycle headlights. MR lamps are designated by symbols such as MR16 where the diameter is represented by numerals indicating units of eighths of an inch. Common sizes for general lighting are MR16 and MR11, with MR20 and MR8 used in specialty applications. Many run on low voltage rather than mains voltage alternating current so require a power supply.

A colour scroller or colour changer is an electro-mechanical lighting accessory used in theater, film, dance and concerts to change the colour projected by stage lighting instruments without the need of a person to be in the vicinity of the light. A colour scroller moves plastic "gel" colour gel [actually dyed polyester and/or other base materials coated with dyes] into the beam of the light. It is generally attached to the gel frame holder at the transmitting end of a lighting fixture, so colour is introduced after the beam characteristics have been defined by the optics of the lighting instrument. Most scrollers are controlled via DMX512 protocol, but some models also utilize the RDM protocol. When colour scrollers were first introduced around 1980, a number of companies produced them, including: Avolites, GAM Products, Morpheus Lights, Rainbow, Rosco Laboratories and Wybron Inc. Now the main manufacturers are: A.C. Lighting, Apollo, Morpheus Lights and Rainbow.

<span class="mw-page-title-main">LED lamp</span> Electric light that produces light using LEDs

An LED lamp or LED light is an electric light that produces light using light-emitting diodes (LEDs). LED lamps are significantly more energy-efficient than equivalent incandescent lamps and fluorescent lamps. The most efficient commercially available LED lamps have efficiencies exceeding 200 lumens per watt (lm/W) and convert more than half the input power into light. Commercial LED lamps have a lifespan several times longer than both incandescent and fluorescent lamps.

<span class="mw-page-title-main">Holiday lighting technology</span> Decorative lighting for festivities

Holiday lighting technology has been subject to considerable development and variation since the replacement of candles by electric lights. While originally used during the Christmas holidays as Christmas lights, modern electric light arrays have become popular around the world in many cultures and are used both during religious festivals and for other purposes unconnected to any festivities.

<span class="mw-page-title-main">SMD LED</span> Surface-mounted device light

The light from white LED lamps and LED strip lights is usually provided by industry standard surface-mounted device LEDs. Non-SMD types of LED lighting also exist, such as COB and MCOB (multi-COB).

<span class="mw-page-title-main">LED filament</span>

A LED filament light bulb is a LED lamp which is designed to resemble a traditional incandescent light bulb with visible filaments for aesthetic and light distribution purposes, but with the high efficiency of light-emitting diodes (LEDs). It produces its light using LED filaments, which are series-connected strings of diodes that resemble in appearance the filaments of incandescent light bulbs. They are direct replacements for conventional clear incandescent bulbs, as they are made with the same envelope shapes, the same bases that fit the same sockets, and work at the same supply voltage. They may be used for their appearance, similar when lit to a clear incandescent bulb, or for their wide angle of light distribution, typically 300°. They are also more efficient than many other LED lamps.

References

  1. 1 2 Castle, Alex How To Get Started with Programmable RGB LED Strip Lighting, TESTED
  2. "Exposure to 'white' light LEDs appears to suppress body's production of melatonin more than certain other lights, research suggests". www.sciencedaily.com. Retrieved 2016-12-16.
  3. "How Are LED Strip Lights Manufactured". www.instructables.com. Retrieved 2019-03-14.
  4. Schiller, Brad The Automated Lighting Programmer's Handbook
  5. "Everything You Need to Know About LED Strip Lights | Waveform Lighting". www.waveformlighting.com. Retrieved 2019-03-19.
  6. "Flex Neon goes beyond traditional lighting with its unique flexing abilities—Accentuate and contour indoor and outdoor spaces with Flex Neon's left/right and up/down bending family of lighting products". LED Magazine. Endeavor Business Media. June 7, 2021. Retrieved October 7, 2022.
  7. Adviser, Light (2021-04-20). "Beam Angle: Things You Must Know To Choose Lamp". Light Adviser. Retrieved 2021-05-21.
  8. "My dimmer switch" . Retrieved 26 March 2017.
  9. Bowman, Jordan (2021-02-24). "I Suddenly Want to Cover My Entire Desk in These TikTok Light Strips". The Strategist. Retrieved 2022-11-06.
  10. Sjoberg, Brooke (2020-06-08). "TikTok lights: Where to buy, how to hang, and why Gen Z made it a thing". The Daily Dot. Retrieved 2022-11-06.