LiftPort Group

Last updated

LiftPort Group
IndustrySpace, Space Commercialization, Cheap Reliable Access to Space
GenreScience, Advancement in Space Travel, Space, Space Elevator
FounderMichael J. Laine
Headquarters
Snohomish, Washington
,
USA
Key people
Michael J. Laine
ProductsSpace Elevator themed Coffee Cups, Wall Posters, etc.
Website http://www.liftport.com

LiftPort Group is a privately held Washington state corporation. It was founded in April 2003 by Michael J. Laine. The company is focused on the construction of a space elevator using carbon nanotubes. [1]

Contents

History

Lunar space elevator

In October 2011 on the LiftPort website Laine announced that LiftPort is pursuing a Lunar space elevator as an interim goal before attempting a terrestrial elevator. At the 2011 Annual Meeting of the Lunar Exploration Analysis Group (LEAG), LiftPort CTO Marshall Eubanks presented a paper on the Lunar Elevator co-authored by Michael Laine. [9]

In August 2012, LiftPort announced the launch of KickStarter funding for their Lunar space elevator. This KickStarter fund can be found at Space Elevator Kickstarter. This project successfully exceeded its funding goal on September 13, 2012, requesting $8,000. It raised $110,353 from 3,468 backers.

The KickStarter project comments thread has many comments from backers asking what has happened with no response. [10]

Related Research Articles

<span class="mw-page-title-main">Space elevator</span> Proposed type of space transportation system

A space elevator, also referred to as a space bridge, star ladder, and orbital lift, is a proposed type of planet-to-space transportation system, often depicted in science fiction. The main component would be a cable anchored to the surface and extending into space. An Earth-based space elevator cannot be constructed with a tall tower supported from below due to the immense weight—instead, it would consist of a cable with one end attached to the surface near the equator and the other end attached to a counterweight in space beyond geostationary orbit. The competing forces of gravity, which is stronger at the lower end, and the upward centrifugal force, which is stronger at the upper end, would result in the cable being held up, under tension, and stationary over a single position on Earth. With the tether deployed, climbers (crawlers) could repeatedly climb up and down the tether by mechanical means, releasing their cargo to and from orbit. The design would permit vehicles to travel directly between a planetary surface, such as the Earth's, and orbit, without the use of large rockets.

The Centennial Challenges are NASA space competition inducement prize contests for non-government-funded technological achievements by American teams.

<span class="mw-page-title-main">Lunar space elevator</span> Proposed transportation system

A lunar space elevator or lunar spacelift is a proposed transportation system for moving a mechanical climbing vehicle up and down a ribbon-shaped tethered cable that is set between the surface of the Moon "at the bottom" and a docking port suspended tens of thousands of kilometers above in space at the top.

<span class="mw-page-title-main">Field-emission display</span>

A field-emission display (FED) is a flat panel display technology that uses large-area field electron emission sources to provide electrons that strike colored phosphor to produce a color image. In a general sense, an FED consists of a matrix of cathode ray tubes, each tube producing a single sub-pixel, grouped in threes to form red-green-blue (RGB) pixels. FEDs combine the advantages of CRTs, namely their high contrast levels and very fast response times, with the packaging advantages of LCD and other flat-panel technologies. They also offer the possibility of requiring less power, about half that of an LCD system. FEDs can also be made transparent.

Megascale engineering is a form of exploratory engineering concerned with the construction of structures on an enormous scale. Typically these structures are at least 1,000 km (620 mi) in length—in other words, at least one megameter, hence the name. Such large-scale structures are termed megastructures.

<span class="mw-page-title-main">Pulickel Ajayan</span> Indian engineer

Pulickel Madhavapanicker Ajayan, known as P. M. Ajayan, is the Benjamin M. and Mary Greenwood Anderson Professor in Engineering at Rice University. He is the founding chair of Rice University's Materials Science and NanoEngineering department and also holds joint appointments with the Department of Chemistry and Department of Chemical and Biomolecular Engineering. Prior to joining Rice, he was the Henry Burlage Professor of Material Sciences and Engineering and the director of the NYSTAR interconnect focus center at Rensselaer Polytechnic Institute until 2007. Known for his pioneering work of designing and carrying out the first experiments to make nanotubes intentionally.

<span class="mw-page-title-main">ARCAspace</span> Aerospace company headquartered in Romania

Romanian Cosmonautics and Aeronautics Association, also known as ARCAspace, is an aerospace company based in Râmnicu Vâlcea, Romania. It builds rockets, high-altitude balloons, and unmanned aerial vehicles. It was founded in 1999 as a non-governmental organization in Romania by the Romanian engineer and entrepreneur Dumitru Popescu and other rocket and aeronautics enthusiasts. Since then, ARCA has launched two stratospheric rockets and four large-scale stratospheric balloons including a cluster balloon. It was awarded two governmental contracts with the Romanian government and one contract with the European Space Agency. ARCASpace is currently developing a three-stage, semi-reusable steam-powered rocket called EcoRocket and in 2022 has shifted its business model to Asteroid mining.

The specific strength is a material's strength divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa⋅m3/kg, or N⋅m/kg, which is dimensionally equivalent to m2/s2, though the latter form is rarely used. Specific strength has the same units as specific energy, and is related to the maximum specific energy of rotation that an object can have without flying apart due to centrifugal force.

<span class="mw-page-title-main">X Prize Cup</span>

The X Prize Cup is a two-day air and space exposition which was the result of a partnership between the X Prize Foundation and the State of New Mexico that began in 2004 when the Ansari X-Prize was held. This led to plans to build the world's first true rocket festival. Three X-Prize Cups have been held: in 2005, 2006 and 2007. Each X Prize Cup hosts different events and demonstrations, such as rocket-powered bicycles, rocket jet packs; but particularly notable are the Lunar Lander Challenge and the Space Elevator Games. 85,000 visitors attended the 2007 X Prize Cup. Although there was no X Prize Cup in 2009, there was a Lunar Lander Challenge.

The history of nanotechnology traces the development of the concepts and experimental work falling under the broad category of nanotechnology. Although nanotechnology is a relatively recent development in scientific research, the development of its central concepts happened over a longer period of time. The emergence of nanotechnology in the 1980s was caused by the convergence of experimental advances such as the invention of the scanning tunneling microscope in 1981 and the discovery of fullerenes in 1985, with the elucidation and popularization of a conceptual framework for the goals of nanotechnology beginning with the 1986 publication of the book Engines of Creation. The field was subject to growing public awareness and controversy in the early 2000s, with prominent debates about both its potential implications as well as the feasibility of the applications envisioned by advocates of molecular nanotechnology, and with governments moving to promote and fund research into nanotechnology. The early 2000s also saw the beginnings of commercial applications of nanotechnology, although these were limited to bulk applications of nanomaterials rather than the transformative applications envisioned by the field.

<span class="mw-page-title-main">Potential applications of carbon nanotubes</span>

Carbon nanotubes (CNTs) are cylinders of one or more layers of graphene (lattice). Diameters of single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) are typically 0.8 to 2 nm and 5 to 20 nm, respectively, although MWNT diameters can exceed 100 nm. CNT lengths range from less than 100 nm to 0.5 m.

The Feynman Prize in Nanotechnology is an award given by the Foresight Institute for significant advances in nanotechnology. Two prizes are awarded annually, in the categories of experimental and theoretical work. There is also a separate challenge award for making a nanoscale robotic arm and 8-bit adder.

<span class="mw-page-title-main">Elevator:2010</span>

Elevator:2010 was an inducement prize contest with the purpose of developing space elevator and space elevator-related technologies. Elevator:2010 organized annual competitions for climbers, ribbons and power-beaming systems, and was operated by a partnership between Spaceward Foundation and the NASA Centennial Challenges.

<span class="mw-page-title-main">Non-rocket spacelaunch</span> Concepts for launch into space

Non-rocket spacelaunch refers to theoretical concepts for launch into space where much of the speed and altitude needed to achieve orbit is provided by a propulsion technique that is not subject to the limits of the rocket equation. Although all space launches to date have been rockets, a number of alternatives to rockets have been proposed. In some systems, such as a combination launch system, skyhook, rocket sled launch, rockoon, or air launch, a portion of the total delta-v may be provided, either directly or indirectly, by using rocket propulsion.

Bradley C. Edwards is an American physicist who has been involved in the development of the space elevator concept.

Three basic approaches for constructing a space elevator have been proposed: First, using in-space resources to manufacture the whole cable in space. Second, launching and deploying a first seed cable and successively reinforcing the seed cable by additional cables, transported by climbers. Third, spooling two cables down and then connecting the ends, forming a loop.

<span class="mw-page-title-main">Space tether</span> Type of tether

Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion is theorized to be significantly less expensive than spaceflight using rocket engines.

A space elevator is a theoretical system using a super-strong ribbon going from the surface of the Earth to a point beyond Geosynchronous orbit. The center of gravity of the ribbon would be exactly in geosynchronous orbit, so that the ribbon would always stay above the anchor point. Vehicles would climb the ribbon powered by a beam of energy projected from the surface of the Earth. Building a space elevator requires materials and techniques that do not currently exist. A variety of Space Elevator competitions have been held in order to stimulate the development of such materials and techniques.

Hypothetical technology is technology that does not exist yet, but that could exist in the future. This article presents examples of technologies that have been hypothesized or proposed, but that have not been developed yet. An example of hypothetical technology is teleportation.

References

  1. "LiftPort Group Wiki". iGoals. Archived from the original on April 23, 2009. Retrieved April 22, 2009.
  2. "Yuri's Night". Seattle Yuri's night 2004. April 12, 2004. Retrieved April 22, 2009.
  3. "LiftPort Group". Lifter Demo at MIT. Archived from the original on September 1, 2005. Retrieved September 19, 2005.
  4. "Millville Facility". Fruition of liftport nanotech. Retrieved April 22, 2009.
  5. "successful 1000-foot lifter test". NBC News . September 23, 2005.
  6. "LiftPort Group". Mile-High Demo. Archived from the original on March 4, 2006. Retrieved February 15, 2006.
  7. "Archived copy" (PDF). Archived from the original (PDF) on July 5, 2011. Retrieved October 27, 2012.{{cite web}}: CS1 maint: archived copy as title (link)
  8. STATE OF WASHINGTON DEPARTMENT OF FINANCIAL INSTITUTIONS SECURITIES DIVISION , CONSENT ORDER Order Number S-06-077-09-CO01| "Archived copy" (PDF). Archived from the original (PDF) on April 22, 2012. Retrieved November 29, 2011.{{cite web}}: CS1 maint: archived copy as title (link)
  9. |LADDER: The Development of a Prototype Lunar Space Elevator T.M. Eubanks and M. Laine, Liftport Luna
  10. Kickstarter project comments thread

Bibliography