Lift (soaring)

Last updated

Lift is a meteorological phenomenon used as an energy source by soaring aircraft and soaring birds. The most common human application of lift is in sport and recreation. The three air sports that use soaring flight are: gliding, hang gliding and paragliding.

Contents

Energy can be gained by using rising air from four sources:

In dynamic soaring it is also possible to gain energy, though this uses differences in wind speeds rather than rising air.

Thermals

Example of a thermal column between the ground and a cumulus Thermal column.svg
Example of a thermal column between the ground and a cumulus

Thermals are columns of rising air that are formed on the ground through the warming of the surface by sunlight. [1] If the air contains enough moisture, the water will condense from the rising air and form cumulus clouds.

Thermal lift is often used by birds, such as raptors, vultures and storks. Although thermal lift was known to the Wright Brothers in 1901, it was not exploited by humans until 1921 by Wilhelm Leusch at the Wasserkuppe in Germany. [2] It was not until about 1930 that the use of thermals for soaring in gliders became commonplace. [3]

Once a thermal is encountered, the pilot flies in circles to keep within the thermal, so gaining altitude before flying off to the next thermal and towards the destination. This is known as "thermalling". Climb rates depend on conditions, but rates of several meters per second are common. Thermals can also be formed in a line usually because of the wind or the terrain, creating cloud streets. These can allow flying straight while climbing in continuous lift.

When the air has little moisture or when an inversion stops the warm air from rising high enough for the moisture to condense, thermals do not create cumulus clouds. Typical locations to find thermals are over towns, freshly ploughed fields and asphalt roads, but thermals are often hard to associate with any feature on the ground. Occasionally thermals are caused by the exhaust gases from power stations or by fires.

As it requires rising heated air, thermalling is only effective in mid-latitudes from spring into late summer. Despite these limitations, it is the most common source of lift used by glider pilots, as ridge lift and lee waves require mountainous terrain, and may thus not be found near a given airfield. During the off-season, when thermals are weaker, ridge and wave lift can still be used and some pilots travel to more mountainous areas to fly.

A Scimitar glider ridge soaring in Lock Haven, Pennsylvania, US RidgeSrn.gif
A Scimitar glider ridge soaring in Lock Haven, Pennsylvania, US

Ridge lift

Ridge lift, or Orographic lift, is caused by rising air on the windward side of a slope. Ridge lift is used extensively by sea birds and by aircraft. In places where a steady wind blows, a ridge may allow virtually unlimited time aloft. [4]

In ridge lift, pilots typically fly long straight legs parallel to the ridge. If the maximum height of the lift is not achieved, the pilot may turn around and fly in the other direction above the same slope. With winds of 20 to 25 knots (46 km/h), it is possible for aircraft to soar at an altitude up to twice the height of the obstacle. Ridge lift can also be augmented by thermals when the slopes also face the sun. [5]

Wave lift

A lenticular cloud produced by a mountain wave Lenticular4.jpg.jpeg
A lenticular cloud produced by a mountain wave

Lee waves occur when a wind of 25 knots (46 km/h) blows over a mountain. Provided that there is a steady increase in wind strength with altitude without a significant change in direction, standing waves may be created. They were discovered by a glider pilot, Wolf Hirth, in 1933. [6] These waves reach heights much greater than the original obstruction and so can permit gliders to climb to the stratosphere. Pilots use supplementary oxygen to avoid hypoxia because most gliders do not have pressurized cockpits. This lift is often marked by long, stationary lenticular (lens-shaped) clouds lying perpendicular to the wind. [7] A mountain wave was used to set the record for highest altitude by a glider when Jim Payne and Tim Gardner soared to an altitude of 22,657 metres (74,334 ft) on September 2, 2018 over El Calafate, Argentina in the purpose-built Windward Performance Perlan II. [8] The current world distance record of 3,008 km (1,869 statute miles) by Klaus Ohlmann (set on 21 January 2003) [9] was also flown using mountain waves in South America.

A rare wave phenomenon is known as Morning Glory, a roll cloud producing strong lift. Pilots near Australia's Gulf of Carpentaria make use of it in springtime. [10]

Schematic cross section through a sea breeze front. If the air inland is moist, cumulus often marks the front. SeaBreeze.svg
Schematic cross section through a sea breeze front. If the air inland is moist, cumulus often marks the front.

Birds have been observed using wave lift to cross mountainous regions. [11]

Convergence zones

The boundaries where two air masses meet are known as convergence zones. [12] These can occur in sea breezes or in desert regions. A sea-breeze (or onshore breeze) is a wind from the sea that develops over land near coasts. In a sea-breeze front, cold air from the sea meets the warmer air from the land and creates a boundary like a shallow cold front along a shear line. This creates a narrow band of soarable lift with winds as light as 10 knots (19 km/h). These permit the gaining of altitude by flying along the intersection as if it were a ridge of land. Convergence may occur over considerable distances and so may permit virtually straight flight while climbing.

Dynamic soaring

In dynamic soaring [13] energy is gained by repeatedly crossing the boundary between air masses of different horizontal velocity rather than by rising air. Such zones of high "wind gradient" are usually too close to the ground to be used safely by gliders, but Albatrosses and model gliders use this phenomenon.

Illusions of lift

A pilot can create an indication of lift on uncompensated instruments by entering a climb by pulling back on the stick (hence "stick thermal"). This is not true lift because the increase in potential energy of the aircraft is achieved from decreasing airspeed rather than the result of flying in rising air. Gliders are equipped with instruments that are compensated to prevent indications of stick thermals but the phenomenon is evident in aircraft whose compensation is inadequate.

Related Research Articles

<span class="mw-page-title-main">Hang gliding</span> Unpowered glider air sport

Hang gliding is an air sport or recreational activity in which a pilot flies a light, non-motorised foot-launched heavier-than-air aircraft called a hang glider. Most modern hang gliders are made of an aluminium alloy or composite frame covered with synthetic sailcloth to form a wing. Typically the pilot is in a harness suspended from the airframe, and controls the aircraft by shifting body weight in opposition to a control frame.

<span class="mw-page-title-main">Paragliding</span> Soaring with a paraglider

Paragliding is the recreational and competitive adventure sport of flying paragliders: lightweight, free-flying, foot-launched glider aircraft with no rigid primary structure. The pilot sits in a harness or in a cocoon-like 'pod' suspended below a fabric wing. Wing shape is maintained by the suspension lines, the pressure of air entering vents in the front of the wing, and the aerodynamic forces of the air flowing over the outside.

Soaring may refer to:

<span class="mw-page-title-main">Variometer</span> Flight instrument which determines the aircrafts vertical velocity (rate of descent/climb)

In aviation, a variometer – also known as a rate of climb and descent indicator (RCDI), rate-of-climb indicator, vertical speed indicator (VSI), or vertical velocity indicator (VVI) – is one of the flight instruments in an aircraft used to inform the pilot of the rate of descent or climb. It can be calibrated in metres per second, feet per minute or knots, depending on country and type of aircraft. It is typically connected to the aircraft's external static pressure source.

<span class="mw-page-title-main">Wind shear</span> Difference in wind speed or direction over a short distance

Wind shear, sometimes referred to as wind gradient, is a difference in wind speed and/or direction over a relatively short distance in the atmosphere. Atmospheric wind shear is normally described as either vertical or horizontal wind shear. Vertical wind shear is a change in wind speed or direction with a change in altitude. Horizontal wind shear is a change in wind speed with a change in lateral position for a given altitude.

<span class="mw-page-title-main">Thermal</span> Column of rising air in the lower altitudes of Earths atmosphere

A thermal column is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example of convection, specifically atmospheric convection.

<span class="mw-page-title-main">Speed to fly</span>

Speed to fly is a principle used by soaring pilots when flying between sources of lift, usually thermals, ridge lift and wave. The aim is to maximize the average cross-country speed by optimizing the airspeed in both rising and sinking air. The optimal airspeed is independent of the wind speed, because the fastest average speed achievable through the airmass corresponds to the fastest achievable average groundspeed.

Dynamic soaring is a flying technique used to gain energy by repeatedly crossing the boundary between air masses of different velocity. Such zones of wind gradient are generally found close to obstacles and close to the surface, so the technique is mainly of use to birds and operators of radio-controlled gliders, but glider pilots are sometimes able to soar dynamically in meteorological wind shears at higher altitudes.

<span class="mw-page-title-main">Lee wave</span> Atmospheric stationary oscillations

In meteorology, lee waves are atmospheric stationary waves. The most common form is mountain waves, which are atmospheric internal gravity waves. These were discovered in 1933 by two German glider pilots, Hans Deutschmann and Wolf Hirth, above the Giant Mountains. They are periodic changes of atmospheric pressure, temperature and orthometric height in a current of air caused by vertical displacement, for example orographic lift when the wind blows over a mountain or mountain range. They can also be caused by the surface wind blowing over an escarpment or plateau, or even by upper winds deflected over a thermal updraft or cloud street.

<span class="mw-page-title-main">Lenticular cloud</span> Cloud species

Lenticular clouds are stationary clouds that form mostly in the troposphere, typically in parallel alignment to the wind direction. They are often comparable in appearance to a lens or saucer. Nacreous clouds that form in the lower stratosphere sometimes have lenticular shapes.

<span class="mw-page-title-main">Ridge lift</span> Wind deflected upwards by an obstacle

Ridge lift is created when a wind strikes an obstacle, usually a mountain ridge or cliff, that is large and steep enough to deflect the wind upward.

<span class="mw-page-title-main">Perlan Project</span> American high altitude research organization

Perlan Project Inc. is a 501(c)(3) not-for-profit aeronautical exploration and atmospheric science research organization that utilizes sailplanes (gliders) designed to fly at extremely high altitudes.

<span class="mw-page-title-main">Gliding competition</span>

Some of the pilots in the sport of gliding take part in gliding competitions. These are usually racing competitions, but there are also aerobatic contests and on-line league tables.

<span class="mw-page-title-main">Radio-controlled glider</span> Type of radio-controlled aircraft

A radio-controlled glider is a type of radio-controlled aircraft that normally does not have any form of propulsion. They are able to sustain continuous flight by exploiting the lift produced by slopes and thermals, controlled remotely from the ground with a transmitter. They can be constructed from a variety of materials, including wood, plastic, polymer foams, and composites, and can vary in wing loading from very light to relatively heavy, depending on their intended use.

Gliding flight is heavier-than-air flight without the use of thrust; the term volplaning also refers to this mode of flight in animals. It is employed by gliding animals and by aircraft such as gliders. This mode of flight involves flying a significant distance horizontally compared to its descent and therefore can be distinguished from a mostly straight downward descent like a round parachute.

<span class="mw-page-title-main">Glider (aircraft)</span> Aircraft designed for operation without an engine

A glider is a fixed-wing aircraft that is supported in flight by the dynamic reaction of the air against its lifting surfaces, and whose free flight does not depend on an engine. Most gliders do not have an engine, although motor-gliders have small engines for extending their flight when necessary by sustaining the altitude with some being powerful enough to take off by self-launch.

<span class="mw-page-title-main">Gliding</span> Recreational activity and competitive air sport

Gliding is a recreational activity and competitive air sport in which pilots fly unpowered aircraft known as gliders or sailplanes using naturally occurring currents of rising air in the atmosphere to remain airborne. The word soaring is also used for the sport.

<span class="mw-page-title-main">Glider (sailplane)</span> Type of aircraft used in the sport of gliding

A glider or sailplane is a type of glider aircraft used in the leisure activity and sport of gliding. This unpowered aircraft can use naturally occurring currents of rising air in the atmosphere to gain altitude. Sailplanes are aerodynamically streamlined and so can fly a significant distance forward for a small decrease in altitude.

Unpowered flight is the ability to stay airborne for a period of time without using any power source. There are several types of unpowered flight. Some have been exploited by nature, others by humankind, and some by both.

Numerous accidents have occurred in the vicinity of thunderstorms due to the density of clouds. It is often said that the turbulence can be extreme enough inside a cumulonimbus to tear an aircraft into pieces, and even strong enough to hold a skydiver. However, this kind of accident is relatively rare. Moreover, the turbulence under a thunderstorm can be non-existent and is usually no more than moderate. Most thunderstorm-related crashes occur due to a stall close to the ground when the pilot gets caught by surprise by a thunderstorm-induced wind shift. Moreover, aircraft damage caused by thunderstorms is rarely in the form of structural failure due to turbulence but is typically less severe and the consequence of secondary effects of thunderstorms.

References

  1. "Diagram of thermals". Archived from the original on 2006-07-18. Retrieved 2006-09-05.
  2. Irving, Frank (1998). The Paths of Soaring Flight. City: World Scientific Publishing Company. p. 53. ISBN   1-86094-055-2. Thermals were known to the Wright Brothers in 1901, but were first really discovered in 1921 by William (sic) Leusch at the Wasserkuppe...
  3. Welch, Ann (1980). The Story of Gliding 2nd edition. John Murray. ISBN   0-7195-3659-6.
  4. "Duration record". Archived from the original on 2005-02-19. Retrieved 2006-08-24.
  5. "Diagram of ridge lift". Archived from the original on 2006-07-18. Retrieved 2006-09-05.
  6. "Article about wave lift" . Retrieved 2006-09-28.
  7. "Diagram of wave lift". Archived from the original on 2006-07-18. Retrieved 2006-09-05.
  8. "Airbus Perlan Mission II glider soars to 76,000 feet to break own altitude record, surpassing even U-2 reconnaissance plane" . Retrieved 2020-07-18.
  9. "Distance record". Archived from the original on 2008-03-11. Retrieved 2006-08-24.
  10. "Morning Glory". Archived from the original on 2006-08-25. Retrieved 2006-09-27.
  11. [Report of use of wave lift by birds by Netherlands Institute for Ecology]
  12. Bradbury, Tom (2000). Meteorology and Flight: Pilot's Guide to Weather (Flying & Gliding). A & C Black. ISBN   0-7136-4226-2.
  13. Reichmann, Helmut (2005). Streckensegelflug. Motorbuch Verlag. ISBN   3-613-02479-9.