Liquid3

Last updated

Liquid3 (also known as Liquid Trees) is a clean energy photobioreactor project whose purpose is to replace the function of trees in heavily polluted urban areas where planting and growing real vegatation is not viable.

Contents

The project was designed by the Institute for Multidisciplinary Research at the University of Belgrade and was awarded as one of the 11 best innovative and climate-smart solutions within the Climate Smart Urban Development program developed by the UNDP and the Ministry of Environmental Protection. [1]

Liquid3
FoundedSeptember 2021
FounderIvan Spasojevic
Area served
Belgrade, Serbia
Website https://liquid3.rs/

Overview

The Liquid3 algial photobioreactor is powered entirely by solar panels. The glass tank is embedded into a structure that acts as a bench and is outfitted with other utilities such as charging ports. Similar to other photobioreactors, air is sucked through a pressure pump and fed to the microalgae, with oxygen being released as a byproduct. Additionally, the Liquid 3 bioreactor is also able to filter out heavy metal contaminants in the air, and contains a temperature regulation system in case external climate conditions were to become too extreme for the microalgae. [2] [3] [4] The creator of the Liquid 3, Dr. Ivan Spasojevic, was motivated to install it in Belgrade due to the city's struggle with pollution. [5]

Criticism

Trees have many benefits that photobioreactor infrastructure like Liquid3 do not provide, such as lowering air temperature, reducing wind speeds, and create wildlife and plant diversity. [6] However, Liquid3 has stated the purpose of the photobioreactor is "not to replace forests but to use this system to fill those urban pockets where there is no space for planting trees." [7]

See also

Related Research Articles

<span class="mw-page-title-main">Urban heat island</span> Urban area that is significantly warmer than its surrounding rural areas

Urban areas usually experience the urban heat island (UHI) effect, that is, they are significantly warmer than surrounding rural areas. The temperature difference is usually larger at night than during the day, and is most apparent when winds are weak, under block conditions, noticeably during the summer and winter. The main cause of the UHI effect is from the modification of land surfaces while waste heat generated by energy usage is a secondary contributor. A study has shown that heat islands can be affected by proximity to different types of land cover, so that proximity to barren land causes urban land to become hotter and proximity to vegetation makes it cooler. As a population center grows, it tends to expand its area and increase its average temperature. The term heat island is also used; the term can be used to refer to any area that is relatively hotter than the surrounding, but generally refers to human-disturbed areas. Urban areas occupy about 0.5% of the Earth's land surface but host more than half of the world's population.

<span class="mw-page-title-main">Biofuel</span> Type of biological fuel

Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial biowaste. Biofuels are mostly used for transportation, but can also be used for heating and electricity. Biofuels are regarded as a renewable energy source. The use of biofuel has been subject to criticism regarding the "food vs fuel" debate, varied assessments of their sustainability, and possible deforestation and biodiversity loss as a result of biofuel production.

<span class="mw-page-title-main">Microalgae</span> Microscopic algae

Microalgae or microphytes are microscopic algae invisible to the naked eye. They are phytoplankton typically found in freshwater and marine systems, living in both the water column and sediment. They are unicellular species which exist individually, or in chains or groups. Depending on the species, their sizes can range from a few micrometers (μm) to a few hundred micrometers. Unlike higher plants, microalgae do not have roots, stems, or leaves. They are specially adapted to an environment dominated by viscous forces.

<span class="mw-page-title-main">Urban forest</span> Collection of trees within a city, town or a suburb

An urban forest is a forest, or a collection of trees, that grow within a city, town or a suburb. In a wider sense, it may include any kind of woody plant vegetation growing in and around human settlements. As opposed to a forest park, whose ecosystems are also inherited from wilderness leftovers, urban forests often lack amenities like public bathrooms, paved paths, or sometimes clear borders which are distinct features of parks. Care and management of urban forests is called urban forestry. Urban forests can be privately and publicly owned. Some municipal forests may be located outside of the town or city to which they belong.

<span class="mw-page-title-main">Algaculture</span> Aquaculture involving the farming of algae

Algaculture is a form of aquaculture involving the farming of species of algae.

Environmental issues in Pakistan include air pollution, water pollution, noise pollution, climate change, pesticide misuse, soil erosion, natural disasters, desertification and flooding. According to the 2020 edition of the environmental performance index (EPI) ranking released by Yale Center for Environmental Law & Policy, Pakistan ranks 142 with an EPI score of 33.1, an increase of 6.1 over a 10-year period. It ranked 180 in terms of air quality. The climatic changes and global warming are the most alarming issues risking millions of lives across the country. The major reasons of these environmental issues are carbon emissions, population explosion, and deforestation.

Pyrolysis oil, sometimes also known as biocrude or bio-oil, is a synthetic fuel with few industrial application and under investigation as substitute for petroleum. It is obtained by heating dried biomass without oxygen in a reactor at a temperature of about 500 °C (900 °F) with subsequent cooling, separation from the aqueous phase and other processes. Pyrolysis oil is a kind of tar and normally contains levels of oxygen too high to be considered a pure hydrocarbon. This high oxygen content results in non-volatility, corrosiveness, partial miscibility with fossil fuels, thermal instability, and a tendency to polymerize when exposed to air. As such, it is distinctly different from petroleum products. Removing oxygen from bio-oil or nitrogen from algal bio-oil is known as upgrading.

<span class="mw-page-title-main">Sustainable city</span> City designed with consideration for social, economic, environmental impact

A sustainable city, eco-city, or green city is a city designed with consideration for social, economic, environmental impact, and resilient habitat for existing populations, without compromising the ability of future generations to experience the same. The UN Sustainable Development Goal 11 defines sustainable cities as those that are dedicated to achieving green sustainability, social sustainability and economic sustainability. They are committed to doing so by enabling opportunities for all through a design focused on inclusivity as well as maintaining a sustainable economic growth. The focus will also includes minimizing required inputs of energy, water, and food, and drastically reducing waste, output of heat, air pollution – CO2, methane, and water pollution. Richard Register, a visual artist, first coined the term ecocity in his 1987 book Ecocity Berkeley: Building Cities for a Healthy Future, where he offers innovative city planning solutions that would work anywhere. Other leading figures who envisioned sustainable cities are architect Paul F Downton, who later founded the company Ecopolis Pty Ltd, as well as authors Timothy Beatley and Steffen Lehmann, who have written extensively on the subject. The field of industrial ecology is sometimes used in planning these cities.

<span class="mw-page-title-main">Photobioreactor</span> Bioreactor with a light source to grow photosynthetic microorganisms

A photobioreactor (PBR) refers to any cultivation system designed for growing photoautotrophic organisms using artificial light sources or solar light to facilitate photosynthesis. Photobioreactors are typically used to cultivate microalgae, cyanobacteria, and some mosses. Photobioreactors can be open systems, such as raceway ponds, which rely upon natural sources of light and carbon dioxide. Closed photobioreactors are flexible systems that can be controlled to the physiological requirements of the cultured organism, resulting in optimal growth rates and purity levels. Photobioreactors are typically used for the cultivation of bioactive compounds for biofuels, pharmaceuticals, and other industrial uses.

<span class="mw-page-title-main">Algal nutrient solution</span>

Algal nutrient solutions are made up of a mixture of chemical salts and seawater. Sometimes referred to as "Growth Media", nutrient solutions, provide the materials needed for algae to grow. Nutrient solutions, as opposed to fertilizers, are designed specifically for use in aquatic environments and their composition is much more precise.In a unified system, algal biomass can be collected by utilizing carbon dioxide emanating from power plants and wastewater discharged by both industrial and domestic sources. This approach allows for the concurrent exploitation of the microalgae's capabilities in both carbon dioxide fixation and wastewater treatment.Algae, macroalgae, and microalgae hold promise in addressing critical global challenges. Sustainable development goals can be advanced through algae-based solutions, to promote a healthy global ecosystem.

<span class="mw-page-title-main">Algae fuel</span> Use of algae as a source of energy-rich oils

Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.

Bioasphalt is an asphalt alternative made from non-petroleum based renewable resources.

<span class="mw-page-title-main">Algae bioreactor</span> Device used for cultivating micro or macro algae

An algae bioreactor is used for cultivating micro or macroalgae. Algae may be cultivated for the purposes of biomass production (as in a seaweed cultivator), wastewater treatment, CO2 fixation, or aquarium/pond filtration in the form of an algae scrubber. Algae bioreactors vary widely in design, falling broadly into two categories: open reactors and enclosed reactors. Open reactors are exposed to the atmosphere while enclosed reactors, also commonly called photobioreactors, are isolated to varying extents from the atmosphere. Specifically, algae bioreactors can be used to produce fuels such as biodiesel and bioethanol, to generate animal feed, or to reduce pollutants such as NOx and CO2 in fuel gases of power plants. Fundamentally, this kind of bioreactor is based on the photosynthetic reaction, which is performed by the chlorophyll-containing algae itself using dissolved carbon dioxide and sunlight. The carbon dioxide is dispersed into the reactor fluid to make it accessible to the algae. The bioreactor has to be made out of transparent material.

<i>Nannochloropsis</i> and biofuels

Nannochloropsis is a genus of alga within the heterokont line of eukaryotes, that is being investigated for biofuel production. One marine Nannochloropsis species has been shown to be suitable for algal biofuel production due to its ease of growth and high oil content, mainly unsaturated fatty acids and a significant percentage of palmitic acid. It also contains enough unsaturated fatty acid linolenic acid and polyunsaturated acid for a quality biodiesel.

<span class="mw-page-title-main">Culture of microalgae in hatcheries</span>

Microalgae or microscopic algae grow in either marine or freshwater systems. They are primary producers in the oceans that convert water and carbon dioxide to biomass and oxygen in the presence of sunlight.

Carbon-neutral fuel is fuel which produces no net-greenhouse gas emissions or carbon footprint. In practice, this usually means fuels that are made using carbon dioxide (CO2) as a feedstock. Proposed carbon-neutral fuels can broadly be grouped into synthetic fuels, which are made by chemically hydrogenating carbon dioxide, and biofuels, which are produced using natural CO2-consuming processes like photosynthesis.

The desert-covered Kingdom of Saudi Arabia is the geographically largest country in the Middle East. Moreover, it accounts for 65% of the overall population of the GCC countries and 42% of its GDP. Saudi Arabia does not have a strong history in environmentalism. Thus, as the number of population increases and the industrial activity grows, environmental issues pose a real challenge to the country.

<span class="mw-page-title-main">Climate change in Illinois</span> Climate change in the US state of Illinois

Climate change in Illinois encompasses the effects of climate change, attributed to man-made increases in atmospheric carbon dioxide, in the U.S. state of Illinois.

<span class="mw-page-title-main">CityTrees</span> Large pollution air filtration system

CityTrees, also known as Robot Trees,Robo-Trees, and Moss Walls, are large air filters installed in many European cities, as well as Hong Kong, that remove pollutants from the atmosphere.

References

  1. "The first algae air purifier in Serbia | United Nations Development Programme". UNDP. Retrieved 2023-11-09.
  2. Krieger, Benno (2022-11-25). "Liquid tree to combat air pollution in Belgrade". Balkan Green Energy News. Retrieved 2023-11-09.
  3. Villalba, María Rosa; Cervera, Rosa; Sánchez, Javier (2023-06-16). "Green Solutions for Urban Sustainability: Photobioreactors for Algae Cultivation on Façades and Artificial Trees". Buildings. 13 (6) (published 16 June 2023): 1541. doi: 10.3390/buildings13061541 . ISSN   2075-5309.
  4. "How Liquid Trees Could Help to Clean Up Our Urban Jungles". Digital for Good | RESET.ORG. 2023-04-10. Retrieved 2023-11-09.
  5. "Liquid Tree: the Future for Cleaner Air". Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Pune. Retrieved 2023-11-09.
  6. "Benefits of Urban Trees | City of Great Falls Montana". greatfallsmt.net. Retrieved 2023-11-09.
  7. "This 'liquid tree' in Belgrade is fighting back against air pollution". euronews. 2021-12-07. Retrieved 2023-11-09.