Liriomyza trifolii

Last updated

Liriomyza trifolii
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Diptera
Family: Agromyzidae
Subfamily: Phytomyzinae
Genus: Liriomyza
Species:
L. trifolii
Binomial name
Liriomyza trifolii
(Burgess, 1880) [1]
Synonyms
  • Agromyza phaseolunata Frost, 1943 [2]
  • Liriomyza alliovoraFrick, 1955 [3]
  • Oscinis trifoliiBurgess, 1880 [1]

Liriomyza trifolii, known generally as the American serpentine leafminer or celery leafminer, is a species of leaf miner fly in the family Agromyzidae. [4]

Contents

L. trifolii is a damaging pest, as it consumes and destroys produce and other plant products. It commonly infests greenhouses and is one of the three most-damaging leaf miners in existence today. It is found in several countries around the globe as an invasive species, but is native to the Caribbean and the Southeastern United States. [5]

Description

L. trifolii are relatively small flies for their family. The adults typically measure less than 2 mm in length. They are mostly yellow in color, although parts of the abdomen and thorax are dark brown or grey. They typically have yellow legs. A key distinction between L. trifolii and their very similar relatives, L. sativae, are L. trifolii's dark, matte mesonotum. [5]

Wing veins Phytomyzinae wing veins-1.svg
Wing veins

L. trifolii typically have a wingspan of 1.25 to 1.90 mm. Their wings are transparent and have veins in a similar pattern to that of flies in the Phytomyzinae subfamily. [5]

Distribution

Originally, L. trifolii was solely found in Caribbean countries and the southeastern United States (specifically concentrated in southern Florida). [5] However, export of produce and other vegetative goods from these areas has led to the dispersion of L. trifolii to several countries in Asia along the Pacific Ocean, as well as Europe, California, and certain parts of Canada. This human-facilitated dispersion occurred mostly after L. trifolii became resistant to certain insecticides and therefore were not killed off by the exports' treatment with insecticides before and after transport. [6]

Habitat

L. trifolii are naturally found in tropical and subtropical regions. However, they frequently infest greenhouses and can now be found as an invasive species in a wider variety of climates. [5] Because of this human-facilitated dispersion, L. trifolii can now be found in more temperate climates than they naturally would, although their development and survival is not as successful in the cooler climates. [5] [7]

Life History

Compared to other flies, L. trifolii have a relatively brief life cycle, ranging from 21 to 28 days in habitats they are native to. Because of this, there can be multiple generations of L. trifolii within one year in warm climates. [5] Additionally, the rate of development for L. trifolii has been shown to be temperature-dependent. Maximum pupal survival rates and oviposition rates were shown to occur at 30˚C. [7]

Eggs

The eggs are typically about 1 mm long, 0.2 mm wide, and oval in shape. Initially after oviposition, the eggs are clear, but they become creamy white in color as time goes on. Eggs are laid just below the surface of the leaf; when the larvae hatch, they mine their way out of the leaf as they feed, hence the name "leaf miner". The eggs frequently fall victim to parasitoid wasps. [5]

Larval Instars

Larval shape of Liriomyza asclepiadis Liriomyza asclepiadis larva.jpg
Larval shape of Liriomyza asclepiadis

The larvae of L. trifolii are unique from those of many other flies in their shape, as the body of L. trifolii larva does not taper at the head end. The larvae are uniform in thickness at both their anterior and posterior ends but additionally have a pair of spiracles at the posterior end. They do not have legs and are initially clear in color, but gradually become yellow as they mature. [5]

The larval instars are differentiable by the lengths of the body and mouthparts. The first instar is recognizable by a mean body length of 0.39 mm and a mouthpart length of 0.10 mm. For the second instar, the mean measurements are 1.00 mm (body) and 0.17 mm (mouth). For the third instar, the mean measurements are 1.99 mm (body) and 0.25 mm (mouth). The fourth instar is a non-feeding stage and thus is usually disregarded. [5]

Pupa

Typically, at the end of the larval phase, L. trifolii drop to the soil to pupate after exiting the leaf mines they have created. Initially, the puparium is yellow, but it grows to become a darker brown over time. The puparium is typically less than 2.3 mm long and 0.75 mm wide. [5]

Adults

Adult female L. trifolii tend to live around 13 to 18 days. Male adults typically only live 2 to 3 days because they are unable to puncture plants and thus have difficulty feeding. As previously described, both males and females are typically around 2 mm in length with a wingspan around 1.25 mm. [5] After chewing a fan shape into the leaf of their host plant, adults feed on exuding sap of the host plant on which oviposition will occur. [8]

Food Resources

Both larval and adult female L. trifolii feed primarily on the leaves of their host plants. Larvae feed mostly on the layer of the leaf just below the epidermis, while female adults feed on liquids expelled by the leaves after the adult has punctured them. [5] [8] L. trifolii feed on a large variety of host plants, including both vegetables and ornamental plants. Studies on the flies' preferred hosts show that some of L. trifolii's most preferable hosts are chrysanthemums, Gerber daisies, and celery. When the females are placed on preferable hosts, they produce more holes and show an increased rate of oviposition. [8]

Subtropical Rainforest Rainforest at cedar creek (14383699073).jpg
Subtropical Rainforest

Mating

The ways in which L. trifolii signal readiness for mating are not entirely known. Researchers have not reported the presence of any sex pheromones, but L. trifolii may attract mates and signal readiness through a series of short-distance vocalization by the males. This vocalization also manifests into male L. trifolii rapidly "bobbing" up and down when nearby to females they would like to mate with. [9]

Males are typically not overly aggressive, but aggression between L. trifolii males has been observed in severely overcrowded laboratory conditions. During copulation, if a rival male approaches a pair, the mating male will repeatedly flex his wings until the rival is scared away. This is likely a display of his fitness through his wing size. [9]

Parental Care

Oviposition

Oviposition occurs within 24 hours of mating, usually during daylight hours. [5] [8] When oviposition is going to occur, the female punctures the host leaf in a tubular shape, feeding on the sap released from the leaf as she punctures. [10] Oviposition typically occurs at a rate of 35 to 39 eggs per day. Females often lay a total of 200 to 400 eggs in their lifetime when on ideal hosts such as celery. Both the rate of oviposition and the total fecundity decrease when located on less ideal host plants, such as tomatoes. [5] [8]

Site Selection For Egg Laying

Liriomyza asclepiadis, leaf mines in Asclepias Liriomyza asclepiadis mines.jpg
Liriomyza asclepiadis, leaf mines in Asclepias

Eggs are typically oviposited on leaves toward the center of the host plant. Regardless of host plant, the female's first action is bending of the abdomen to position her ovipositor at the correct angle to the leaf. The ovipositor than contacts the leaf in a series of "rapid thrusts". The female punctures the leaf in either a fan shape or a tubular shape. [9] The eggs are inserted into the tubular punctures on the bottom surface of the host leaf, just below the epidermis. This is where the larva will create its mine upon hatching. [5] [10] Oftentimes, the mother will make multiple punctures before selecting the ideal spot. Oviposition rate is significantly increased for female L. trifolii located on ideal host plants such as celery. [8] [10]

Enemies

Parasites

Parasitoid wasp from family Braconidae Tenthredinidae sawfly 03737.jpg
Parasitoid wasp from family Braconidae

The most significant natural threat to L. trifolii are parasitoid wasps. These wasps lay their eggs amongst the eggs of L. trifolii. When the wasps hatch, they typically devour the flies' nearby eggs, as is the defining characteristic of parasitoids. The most common parasitoids of L. trifolii are wasps from the families Braconidae, Eulophidae, and Pteromalidae. In the absence of insecticides, these parasitoids play a major role in keeping the L. trifolii population under control. [5]

Predators

Although predators and diseases tend to impact the L. trifolii population to an insignificant amount compared to parasitoids, both larvae and adult L. trifolii can still be at risk of predation by general predators. The most common predators of L. trifolii are ants. [5]

Interactions With Humans

L. trifolii is a highly destructive pest of both produce and ornamental plants. They often infest greenhouses and inhabit shipping containers, making them an invasive species in several countries around the globe. Because of this, they are a quarantine species in several countries, meaning their host plants are isolated for testing when L. trifolii are found on them. [6] [11] L. trifolii are most destructive to floricultural crops, which are severely impacted by any insect damage. Leaf miner abundance is assessed using a variety of sampling methods, including counting mines, counting live larvae, collecting pupae, and capturing adults. [5] L. trifolii can be destructive to crops in many ways, including spreading diseases, destroying seedlings, and altering leaf production, which damages the fruits. All of these impacts on the crops decrease their value, which can be catastrophic to the industry. [9]

Insecticide Resistance

Floriculture greenhouse Teplichnyi kompleks MUP <<Spetsdorremstroi>> v g. Petropavlovsk-Kamchatskii.jpg
Floriculture greenhouse

The spread of this pest is widely due to the fly's developed resistance to certain insecticides. This has been a major issue combatted by attempts from the Florida Fruit and Vegetable Association (FFVA) to mitigate the infestation and spread of these pests. However, due to previous spreading of L. trifolii through exported goods, L. trifolii are already a major pest of ornamentals in California. [11] [12] The California chrysanthemum industry lost approximately $93 million to damage caused by L. trifolii in the 1980s. [9] Insecticides also kill off parasitoids that inhabit the area. Thus, the use of insecticides not only damages the ecosystem, but also reduces the population of the main form of biological control for L. trifolii. [5]

Related Research Articles

<span class="mw-page-title-main">Tachinidae</span> Family of insects

The Tachinidae are a large and variable family of true flies within the insect order Diptera, with more than 8,200 known species and many more to be discovered. Over 1,300 species have been described in North America alone. Insects in this family commonly are called tachinid flies or simply tachinids. As far as is known, they all are protelean parasitoids, or occasionally parasites, of arthropods, usually other insects. The family is known from many habitats in all zoogeographical regions and is especially diverse in South America.

<span class="mw-page-title-main">Leaf miner</span> Larva of an insect that lives in and eats the leaf tissue of plants

A leaf miner is any one of numerous species of insects in which the larval stage lives in, and eats, the leaf tissue of plants. The vast majority of leaf-mining insects are moths (Lepidoptera), sawflies, and flies (Diptera). Some beetles also exhibit this behavior.

<span class="mw-page-title-main">Agromyzidae</span> Family of flies

The Agromyzidae are a family of flies, commonly referred to as the leaf-miner flies for the feeding habits of their larvae, most of which are leaf miners on various plants. It includes roughly 2,500 species, they are small, some with wing length of 1 mm. The maximum size is 6.5 mm. Most species are in the range of 2 to 3 mm.

<i>Phthorimaea operculella</i> Species of moth

Phthorimaea operculella, also known as the potato tuber moth or tobacco splitworm, is a moth of the family Gelechiidae. It is an oligophagous insect that feeds on the plant family Solanaceae and is especially known for being a major pest of potato crops. Currently farmers utilize insecticides, parasites, and sprinkler irrigation in order to prevent P. operculella from infesting their croplands.

<i>Delia</i> (fly) Genus of flies

Delia flies are members of the Anthomyiidae family within the superfamily Muscoidae. The identification of different species of Delia can be very difficult for non-specialists as the diagnostic characteristics used for immature and/or female specimens may be inconsistent between species. Past taxonomic keys were not as comprehensive in their identification of Delia specimens; they were either too reliant on genetic characteristics, focused solely on a specific life stage, or were focused only on certain species. However current taxonomic keys aim to be more thorough by not only including morphological diagnostics for males, females, and immature specimens of various species, but also their genetic make-up or molecular barcode.

<i>Bactrocera dorsalis</i> Species of insect

Bactrocera dorsalis, previously known as Dacus dorsalis and commonly referred to as the oriental fruit fly, is a species of tephritid fruit fly that is endemic to Southeast Asia. It is one of the major pest species in the genus Bactrocera with a broad host range of cultivated and wild fruits. Male B. dorsalis respond strongly to methyl eugenol, which is used to monitor and estimate populations, as well as to annihilate males as a form of pest control. They are also important pollinators and visitors of wild orchids, Bulbophyllum cheiri and Bulbophyllum vinaceum in Southeast Asia, which lure the flies using methyl eugenol.

<i>Anthonomus eugenii</i> Species of beetle

Anthonomus eugenii is known as the pepper weevil. This beetle feeds and lays eggs on plants in the genus Capsicum and a few species in the genus Solanum. A. eugenii is native to Mexico, however, it is an important pest of Capsicum in Florida, Puerto Rico, and Central America.

<span class="mw-page-title-main">Serpentine leaf miner</span> Species of fly

The serpentine leaf miner is the larva of a fly, Liriomyza brassicae, in the family Agromyzidae, the leaf miner flies. It mines wild and cultivated plants, such as cabbage, broccoli, cauliflower and Chinese broccoli.

<i>Helicoverpa punctigera</i> Species of moth

Helicoverpa punctigera, the native budworm, Australian bollworm or Chloridea marmada, is a species of moth in the family Noctuidae. This species is native to Australia. H. punctigera are capable of long-distance migration from their inland Australian habitat towards coastal regions and are an occasional migrant to New Zealand.

<i>Chloridea virescens</i> Species of moth

Chloridea virescens, commonly known as the tobacco budworm, is a moth of the family Noctuidae found throughout the eastern and southwestern United States along with parts of Central America and South America.

<i>Phytomyza ilicis</i> Species of insect

Phytomyza ilicis, the holly leaf miner, is a leaf mining fly in the family Agromyzidae, whose larvae burrow into leaves of the holly tree leaving characteristic pale trails or leaf mines.

<i>Empoasca decipiens</i> Species of true bug

Empoasca decipiens is a species of leafhopper belonging to the family Cicadellidae subfamily Typhlocybinae. The adults reach 3–4 millimetres (0.12–0.16 in) of length and a are homogenously green with whitish markings on its pronotum and vertex. E. decipiens is commonly referred to as the “green leafhopper” because of its colouration. The absence of clear stripes along the forewings can easily distinguish it from the similar leafhopper species E. vitis, but distinguishing it from other leafhoppers with the same colouration requires examination under a microscope. It is present in most of Europe, in the eastern Palearctic realm, in North Africa, in the Near East, and in the Afrotropical realm. Both nymphs and adults of this small insect are considered to be a very destructive pests on field crops, vegetables and greenhouse plants.

<i>Samea multiplicalis</i> Species of moth

Samea multiplicalis, the salvinia stem-borer moth, is an aquatic moth commonly found in freshwater habitats from the southern United States to Argentina, as well as in Australia where it was introduced in 1981. Salvinia stem-borer moths lay their eggs on water plants like Azolla caroliniana, Pistia stratiotes, and Salvinia rotundifolia. Larval feeding on host plants causes plant death, which makes S. multiplicalis a good candidate for biological control of weedy water plants like Salvinia molesta, an invasive water fern in Australia. However, high rates of parasitism in the moth compromise its ability to effectively control water weeds. S. multiplicalis larvae are a pale yellow to green color, and adults develop tan coloration with darker patterning. The lifespan, from egg to the end of adulthood is typically three to four weeks. The species was first described by Achille Guenée in 1854.

<i>Anastrepha suspensa</i> Species of fly

Anastrepha suspensa, known as the Caribbean fruit fly, the Greater Antillean fruit fly, guava fruit fly, or the Caribfly, is a species of tephritid fruit fly. As the names suggest, these flies feed on and develop in a variety of fruits, primarily in the Caribbean. They mainly infest mature to overripe fruits. While thought to have originated in Cuba, the Caribbean fruit fly can now also be found in Florida, Hispaniola, and Puerto Rico.

<i>Phytomyza horticola</i> Species of fly

Phytomyza horticola is a species of leaf-mining fly in the family Agromyzidae of the order Diptera. For a time it was treated as Chromatomyia horticola, but its original name has been restored after genus Chromatomyia was synonymized with Phytomyza. The species is a pest of high economic importance affecting the vegetable crops in temperate and tropical regions.

<i>Scaptomyza flava</i> Species of fly

Scaptomyza flava is an herbivorous leaf mining fly species in the family Drosophilidae. In Latin, flava means golden or yellow. The fly is amber to dark brown in color and approximately 2.5 mm in length. In Europe and New Zealand the larvae are pests of plants in the order Brassicales, including arugula, brassicas, broccoli, Brussels sprouts, bok choy, cabbage, canola, cauliflower, horseradish, kale, kohlrabi, napa cabbage, nasturtium, radish, rapini, rutabaga, turnip, wasabi and watercress. In New Zealand, its range has expanded to include host species that are intercropped with salad brassicas, including gypsophila, otherwise known as baby's breath, which is in the pink family (Caryophyllaceae) and the pea in the Fabaceae. More typically, S. flava is oligophagous within the Brassicales. Scaptomyza are unusual within the Drospophilidae because the group includes species that are truly herbivorous. Other herbivorous drosophilids include D. suzukii, which attacks fruit very early during ripening and species within the genus Lordiphosa, from Africa and Asia, which also include leaf miners. Most drosophilids feed on microbes associated with decaying vegetation and sap fluxes.

Liriomyza sativae, commonly known as the vegetable leaf miner, is a species of insect, a fly in the family Agromyzidae. The larvae of this fly mine the leaves of a range of vegetables and weeds, but seem to favour plants in the families Cucurbitaceae, Fabaceae and Solanaceae.

<i>Liriomyza huidobrensis</i> Species of fly

Liriomyza huidobrensis, commonly known as the pea leaf miner, is a species of insect, a fly in the family Agromyzidae. The larvae of this fly mine the leaves and stems of peas and a range of other vegetables. It is also known as the serpentine leaf miner, but this name is also used for a closely related species, Liriomyza brassicae.

Mallophora ruficauda is a species of parasitic robber fly in the family Asilidae, endemic to South and Central America. Like other robber flies, M. ruficauda is known for its aggressive behavior and predation upon other insects, especially bees. M. ruficauda mimics a bumblebee to fool predators into thinking it has a painful sting and is not worth eating.

<i>Anastrepha fraterculus</i> South American fruit fly

Anastrepha fraterculus, known as the South American fruit fly, is a fruit fly species from the genus Anastrepha. A. fraterculus is a polyphagous, frugivorous fly that is a significant pest of commercial fruit production in South America.

References

  1. 1 2 Burgess, E. (1880). "In Comstock, J. H., Report of the entomologist". USDA, Comnr Agric. Rpt. 1879: 185–348.
  2. Frost, S.W. (1943). "Three new species of Diptera related to Agromyza pusilla Meig". Journal of the New York Entomological Society. 51: 253–263, 2 pls.
  3. Frick, K.E. (1955). "Nearctic species in the Liriomyza pusilla complex. No. 3. L. alliovora, new name for the Iowa onion miner (Diptera: Agromyzidae)". Journal of the Kansas Entomological Society. 28: 88–92.
  4. Spencer, Kenneth A. (1973). Agromyzidae (Diptera) of Economic importance Series Entomologica. Vol. 9. The Hague. D. Gld.: Dr. W. Junk bv. pp. xii + 418 p.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 "American serpentine leafminer - Liriomyza trifolii (Burgess)". entnemdept.ufl.edu. Retrieved 2019-10-29.
  6. 1 2 Minkenberg, O. P. J. M. (1988). "Dispersal of Liriomyza trifolii". EPPO Bulletin. 18 (1): 173–182. doi:10.1111/j.1365-2338.1988.tb00362.x. ISSN   1365-2338.
  7. 1 2 Leibee, G. L. (1984-04-01). "Influence of Temperature on Development and Fecundity of Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) on Celery". Environmental Entomology. 13 (2): 497–501. doi:10.1093/ee/13.2.497. ISSN   0046-225X.
  8. 1 2 3 4 5 6 Parrella, M. P.; Robb, K. L.; Bethke, J. (1983-01-15). "Influence of Selected Host Plants on the Biology of Liriomyza trifolii (Diptera: Agromyzidae)". Annals of the Entomological Society of America. 76 (1): 112–115. doi: 10.1093/aesa/76.1.112 . ISSN   0013-8746.
  9. 1 2 3 4 5 Parrella, M P (1987). "Biology of Liriomyza". Annual Review of Entomology. 32 (1): 201–224. doi:10.1146/annurev.en.32.010187.001221.
  10. 1 2 3 Bethke, J. A.; Parrella, M. P. (1985). "Leaf puncturing, feeding and oviposition behavior of Liriomyza trifolii". Entomologia Experimentalis et Applicata. 39 (2): 149–154. doi:10.1111/j.1570-7458.1985.tb03556.x. ISSN   1570-7458. S2CID   84643771.
  11. 1 2 Ferguson, J. Scott (2004-02-01). "Development and Stability of Insecticide Resistance in the Leafminer Liriomyza trifolii (Diptera: Agromyzidae) to Cyromazine, Abamectin, and Spinosad". Journal of Economic Entomology. 97 (1): 112–119. doi:10.1093/jee/97.1.112. ISSN   0022-0493. PMID   14998134.
  12. Mason, Gail A.; Johnson, Marshall W.; Tabashnik, Bruce E. (1987-12-01). "Susceptibility of Liriomyza sativae and L. trifolii (Diptera: Agromyzidae) to Permethrin and Fenvalerate". Journal of Economic Entomology. 80 (6): 1262–1266. doi:10.1093/jee/80.6.1262. ISSN   0022-0493.