List of psychoactive plants

Last updated
Salvia divinorum, a dissociative hallucinogenic sage Salvia divinorum - Herba de Maria.jpg
Salvia divinorum , a dissociative hallucinogenic sage
Psychoactive plant phylogeny with active ingredient indicated Psychoactive Plants.png
Psychoactive plant phylogeny with active ingredient indicated

This is a list of plant species that, when consumed by humans, are known or suspected to produce psychoactive effects: changes in nervous system function that alter perception, mood, consciousness, cognition or behavior. Many of these plants are used intentionally as psychoactive drugs, for medicinal, religious, and/or recreational purposes. Some have been used ritually as entheogens for millennia. [1] [2]

Contents

The plants are listed according to the specific psychoactive chemical substances they contain; many contain multiple known psychoactive compounds.

Cannabinoids

Cannabis plant Cannabis flowering.jpg
Cannabis plant

Species of the genus Cannabis , known colloquially as marijuana, including Cannabis sativa and Cannabis indica , is a popular psychoactive plant that is often used medically and recreationally. The principal psychoactive substance in Cannabis, tetrahydrocannabinol (THC), contains no nitrogen, unlike many (but not all) other psychoactive substances [lower-alpha 1] and is not an indole, tryptamine, phenethylamine, anticholinergic (deliriant) or dissociative drug. THC is just one of more than 100 identified cannabinoid compounds in Cannabis, which also include cannabinol (CBN) and cannabidiol (CBD).

Cannabis plants vary widely, with different strains producing dynamic balances of cannabinoids (THC, CBD, etc.) and yielding markedly different effects. Popular strains are often hybrids of C. sativa and C. indica.

The medicinal effects of cannabis are widely studied, and are active topics of research both at universities and private research firms. Many jurisdictions have laws regulating or prohibiting the cultivation, sale and/or use of medical and recreational cannabis.[ citation needed ]

Tryptamines

DMT molecule Dimethyltryptamine.svg
DMT molecule
5-MeO-DMT molecule 5-MeO-DMT.svg
5-MeO-DMT molecule
Delosperma cooperi flower (MHNT) Delosperma cooperi - Flower.jpg
Delosperma cooperi flower
Delosperma lydenbergense flower M. Delosperma lydenbergense flower.JPG
Delosperma lydenbergense flower
Delosperma nubigenum Delosperma nubigenum.jpg
Delosperma nubigenum

Many of the psychedelic plants contain dimethyltryptamine (DMT), or other tryptamines, which are either snorted (Virola, Yopo snuffs), vaporized, or drunk with MAOIs (Ayahuasca). It cannot simply be eaten as it is not orally active without an MAOI and it needs to be extremely concentrated to be vaporized.

Acanthaceae

Species, Alkaloid content, where given, refers to dried material

Aceraceae

Aizoaceae

Apocynaceae

Asteraceae

Erythroxylaceae

Fabaceae (Leguminosae)

Alpina mueller Alpina mueller.jpg
Alpina mueller
Acacia angustissima Acacia angustissima usgs.png
Acacia angustissima
Acacia-berlandieri flower Acacia-berlandieri-flowers4.jpg
Acacia-berlandieri flower
Acacia catechu Acacia catechu - Kohler-s Medizinal-Pflanzen-003.jpg
Acacia catechu
Acacia confusa Starr 050107-2872 Acacia confusa.jpg
Acacia confusa
Acacia phlebophylla Acacia phlebophylla.jpg
Acacia phlebophylla
Starr 020911-0004 Acacia podalyriifolia.jpg
Bufotenin molecule Bufotenin2DACS.svg
Bufotenin molecule
Anadenanthera colubrina Anadenanthera colubrina.jpg
Anadenanthera colubrina
Anadenanthera peregrina Anadenanthera peregrina.jpg
Anadenanthera peregrina
Lespedeza capitata Lespedeza capitata habit.jpg
Lespedeza capitata
Codariocalyx motorius Codariocalyx motorius Taub39.png
Codariocalyx motorius
Virola theiodora Virola-theiodora-1860.jpg
Virola theiodora
Lespedeza bicolor Lespedeza ja02.jpg
Lespedeza bicolor
Mimosa scabrella Mimosa-scabrella.jpg
Mimosa scabrella

1,2,3,4-Tetrahydro-6-methoxy-2,9-dimethyl-beta-carboline, Plant, [48] 1,2,3,4-Tetrahydro-6-methoxy-2-methyl-beta-carboline, Plant, [45] 5-Methoxy-N,N-dimethyltryptamine, Bark, [45] 5-Methoxy-N-methyltryptamine, Bark, [45] Bufotenin, plant, [45] beans, [44] Bufotenin N-oxide, Fruit, [45] beans, [44] N,N-Dimethyltryptamine-oxide, Fruit [45] [49]

Lauraceae

Nectandra megapotamica , NMT [64] [ unreliable source? ]

Malpighiaceae

Myristicaceae

Musaaceae

Ochnaceae

Pandanaceae

Poaceae (Gramineae)

Some Graminae (grass) species contain gramine, which can cause brain damage, other organ damage, central nervous system damage and death in sheep. [69]

None of the above alkaloids are said to have been found in Phalaris californica , Phalaris canariensis , Phalaris minor and hybrids of P. arundinacea together with P. aquatica. [71]

Polygonaceae

Rubiaceae

Rutaceae [78] [79]

Phenethylamines

Mescaline molecule Mescaline.svg
Mescaline molecule
DMPEA molecule 3,4-Dimethoxyphenethylamine.svg
DMPEA molecule
Peyote Peyote Cactus.jpg
Peyote

Species, Alkaloid Content (Fresh)Alkaloid Content (Dried)

Beta-carbolines

Harmaline, a Beta-carboline Harmaline structure.svg
Harmaline, a Beta-carboline
Harmalol molecule Harmalol.svg
Harmalol molecule
THH molecule (R)-Tetrahydroharmine Structural Formula V.1.svg
THH molecule
Apocynum cannabinum Apocynum cannabinum 6801.JPG
Apocynum cannabinum
Calycanthus Spice Bush Calycanthus occidentalis Leaf 3008px.jpg
Calycanthus
Koeh Koeh-101.jpg
Koeh
Elaeagnus angustifolia Elaeagnus angustifolia 20050608 852.jpg
Elaeagnus angustifolia
Festuca arundinacea Starr 030603-0006 Festuca arundinacea.jpg
Festuca arundinacea

Beta-carbolines are "reversible" MAO-A inhibitors. They are found in some plants used to make Ayahuasca. In high doses the harmala alkaloids are somewhat hallucinogenic on their own. β-carboline is a benzodiazepine receptor inverse agonist and can therefore have convulsive, anxiogenic and memory enhancing effects. [96]

Apocynaceae

Bignoniaceae

Calycanthaceae

Chenopodiaceae

Combretaceae

Cyperaceae

Elaeagnaceae

Gramineae

Lauraceae

Leguminosae

Loganiaceae

Malpighiaceae

Myristicaceae

Ochnaceae

Palmae

Papaveraceae

Passifloraceae

Badea Badea.jpg
Badea

Polygonaceae

Rubiaceae

Rutaceae

Sapotaceae

Simaroubaceae

Solanaceae

Symplocaceae

Tiliaceae

Zygophyllaceae

Opiates

Opiates v opioids with different major subclassifications indicated Opiates v opioids.png
Opiates v opioids with different major subclassifications indicated

Opiates are the natural products of many plants, the most famous and historically relevant of which is Papaver somniferum. Opiates are defined as natural products (or their esters and salts that revert to the natural product in the human body), whereas opioids are defined as semi-synthetic or fully synthetic compounds that trigger the Opioid receptor of the mu sub-type. Other opiate receptors, such as kappa- and delta-opiate receptors are part of this system but do not cause the characteristic behavioral depression and analgesia which is mostly mediated through the mu-opiate receptor.

An opiate, in classical pharmacology, is a substance derived from opium. In more modern usage, the term opioid is used to designate all substances, both natural and synthetic, that bind to opioid receptors in the brain (including antagonists). Opiates are alkaloid compounds naturally found in the Papaver somniferum plant (opium poppy). The psychoactive compounds found in the opium plant include morphine, codeine, and thebaine. Opiates have long been used for a variety of medical conditions with evidence of opiate trade and use for pain relief as early as the eighth century AD. Opiates are considered drugs with moderate to high abuse potential and are listed on various "Substance-Control Schedules" under the Uniform Controlled Substances Act of the United States of America.

In 2014, between 13 and 20 million people used opiates recreationally (0.3% to 0.4% of the global population between the ages of 15 and 65). According to the CDC, from this population, there were 47,000 deaths, with a total of 500,000 deaths from 2000 to 2014. In 2016, the World Health Organization reported that 27 million people suffer from Opioid use disorder. They also reported that in 2015, 450,000 people died as a result of drug use, with between a third and a half of that number being attributed to opioids.

Papaver somniferum flower and scored capsule with latex. Papaver somniferum 2021 G4.jpg
Papaver somniferum flower and scored capsule with latex.

Papaver somniferum

The plant contains a latex that thickens into opium when it is dried. Opium contains approximately 40 alkaloids, which are summarized as opium alkaloids. [6] The main psychoactive alkaloids are:

Atherospermataceae

Laurelia novae-zelandiae ~ pukateine

Mitragyna speciosa/Mitragyna parvifolia

Mitragynine.svg
Mitragynine
7-hydroxymitragynine2DACS.svg
7-Hydroxymitragynine
Mitragynine-pseudoindoxyl.svg
Mitragynine pseudoindoxyl

Picralima nitida

Akuammicine Structure.svg
Akuammicine
Pericine.svg
Pericine

Psychotria colorata

Hodgkinsine Hodgkinsine.svg
Hodgkinsine

Aspidosperma spp.

Plants containing other psychoactive substances

Plants containing other psychoactive substances
Substance(s)PlantComments
Alpha-Asaron.svg

Asarone

Acorus calamus1.jpg

Acorus calamus

Toxic.[ citation needed ]
Yohimbine structure.svg

Yohimbine

Alchornea floribunda α2-adrenergic receptor antagonist.[ citation needed ]
Arecoline.svg Arecaidine.svg

Arecoline, Arecaidine

Beetle palm with nut bunch.jpg

Areca catechu

GABA uptake inhibitor, [113] [114] stimulant. [115]
Protopine structure.svg

Protopine

Stachelmohn.JPG

Argemone mexicana

Used by Chinese residents of Mexico during the early 20th century as a legal substitute for opium and currently smoked as a marijuana substitute.[ citation needed ]
Ergine.png

Ergine

Starr 050107-2974 Argyreia nervosa.jpg

Argyreia nervosa (Hawaiian Baby Woodrose)

Seeds contain ergine (also known as LSA), often 50-150X the amounts found in Ipomoea violacea . LSA is a hallucinogen. [116]
(-)-alpha-Thujon.svg

Thujone

Artemisia absinthium P1210748.jpg

Artemisia absinthium

Also called "wormwood". GABA receptor antagonist. [117]
Quinoline & Aporphine alkaloids Asimina triloba3.jpg

Asimina triloba (Paw Paw)

Identical alkaloid to morphine. [118]
L-Scopolamin.svg Atropine.svg Hyoscyamine.svg

Tropane alkaloids (scopolamine, atropine, hyoscyamine)

Atropa belladonna - Kohler-s Medizinal-Pflanzen-018.jpg

Atropa belladonna

Commonly known as 'deadly nightshade'. An anticholinergic deliriant. [119]
L-Scopolamin.svg Atropine.svg Hyoscyamine.svg

Tropane alkaloids (scopolamine, atropine, and hyoscyamine)

Brugmansia.jpg

Brugmansia

Commonly known as 'angel's trumpets'. An anticholinergic deliriant. [119]
Harmine structure.svg Brunfelsamidine.svg L-Scopolamin.svg

Indole alkaloids (harmine, manacine, brunfelsamidine), Tropane alkaloids (scopolamine)

Brunfelsia pauciflora ( Cham. & Schltdl. ) Benth. flower close-up.jpg

Brunfelsia

Known to cause delirium, sustained mental confusion, and possible blindness. [120]
Unknown Calea zacatechichi cutting.jpg

Calea zacatechichi

Produces vivid dreams after smoking. It is also employed by the Chontal people as a medicinal herb against gastrointestinal disorders, and is used as an appetizer, cathartic anti-dysentery remedy, and as a fever-reducing agent. Its psychedelic properties do not become apparent until the user is asleep. Reports describe rituals that involve drinking it as a tea to induce divinatory or lucid dreams due to its properties as an oneirogen. [121]
Caffeine structure.svg

Caffeine

Csinensis.jpg

Camellia sinensis

Tea leaves, tea, native to Asia.[ citation needed ]
S-Cathinone.svg

Cathinone

Catha edulis.jpg

Catha edulis

Khat, commonly chewed, produces a stimulant effect. [122]
Vincristine.svg

Vincristine

Catharanthus roseus24 08 2012 (1).JPG

Catharanthus roseus

Catharanthus roseus is (perhaps unpleasantly) "hallucinogenic." [123] [ unreliable source? ]
Unknown Cestrum nocturnum (2464189820).jpg

Cestrum nocturnum

Commonly referred to as 'night-blooming jasmine', 'lady of the night', and 'poisonberry'. It has an unknown mechanism of action.[ citation needed ]
Caffeine structure.svg

Caffeine

Starr 070308-5472 Coffea arabica.jpg

Coffea arabica

Coffee beans, coffee, native to Africa. [124]
Caffeine structure.svg

Caffeine

Cola acuminata - Kohler-s Medizinal-Pflanzen-190.jpg

Cola

Cola or kola nut, traditional additive to cola, native to Africa.[ citation needed ]
(Unknown) Coleus-1.jpg

Coleus

Unknown
Bulbocapnine skeletal.svg

Bulbocapnine

Corydalis ambigua.jpg

Corydalis solida,cava

Bulbocapnine, Nantenine, Tetrahydropalmatine
L-Scopolamin.svg Atropine.svg

Tropane alkaloids (Scopolamine, Atropine)

Sacred datura (Datura wrightii) (14212557338).jpg

Datura

Also known as 'thorn apple', 'devil's trumpets', 'loco weed', and 'Jimson weed'. Scopolamine and Atropine are both anticholinergics [125] [126] which produce hallucinogenic and deliriant effects. It has an extensive history of being used recreationally. [127]
(-)-Cytisine.svg

Cytisine

Calia secundiflora flowers.jpg

Dermatophyllum

Nicotine-like effects. partial agonist of nicotinic acetylcholine receptors (nAChRs). [128]
Unknown Desfontainia spinosa.jpg

Desfontainia spinosa

Causes visions. [129]
Nicotine.svg

Nicotine

Duboisia hopwoodii.jpg

Duboisia hopwoodii

Pituri
Unknown Entada rheedii05.jpg

Entada rheedii

African dream herb.[ citation needed ]
Ephedrine.svg

Ephedrine

Ephedra sinica alexlomas.jpg

Ephedra sinica

Ephedra
Cocaine.svg

Cocaine

Erythroxylum coca - Kohler-s Medizinal-Pflanzen-204.jpg

Erythroxylum coca

Coca. Widely used illegal stimulant, produces hallucination in overdose, native to South America.[ citation needed ]
Unknown Colpfl25.jpg

Fittonia albivenis

Nerve or mosaic plant, said to produce vision of eyeballs
Himbacine.svg

Himbacine

Galbulimima belgraveana Galbulimima belgraveana is rich in alkaloids and twenty-eight alkaloids have been isolated including himbacine.[ citation needed ]
Glaucin V3.svg

Glaucine

Glaucium flavum03.jpg

Glaucium flavum

Hallucinogenic effects. [130]
Cryogenine.svg

Possibly Cryogenine [ citation needed ]

Heimia myrtifoliaAuditory
Cryogenine.svg

Possibly Cryogenine [ citation needed ]

Heimia salicifolia flowers by Jules Jardinier.jpg

Heimia salicifolia

Auditory [131] [ better source needed ]
Lobeline structure.svg Nicotine.svg

Lobeline, Nicotine

Hippobroma longiflora Belize 2018 2.jpeg

Hippobroma longiflora

Star of Bethlehem
Hyperforin.svg

Hyperforin

Saint John's wort flowers.jpg

Hypericum perforatum

Saint John's wort
Tropane alkaloids Henbane1.JPG

Hyoscyamus

Henbane
Caffeine structure.svg Theobromine.svg

Caffeine, Theobromine, Dimethylxanthines

View of Ilex guayusa from above.jpg

Ilex guayusa

Ilex guayusa is used as an additive to some versions of Ayahuasca. According to the Ecuadorian indigenous, it is also slightly hallucinogenic on its own, when drunk in high enough quantities.[ citation needed ]
Ergine.svg

Ergine

Ipomoea violacea.jpg

Ipomoea tricolor & Ipomoea violacea

Ergine in seeds; up to 0.12% total [132] [ better source needed ] Produces psychedelic effects.
Unknown Justicia pectoralis by Scott Zona - 001.jpg

Justicia pectoralis

Unknown
Lactucarium Lactuca virosa - Kohler-s Medizinal-Pflanzen-213.jpg

Lactuca virosa

Lactucarium
Lagochilin.png

Lagochilin

Lagochilus inebrians.jpg

Lagochilus inebrians

Lagochilin is thought to be responsible for the sedative, hypotensive and hemostatic effects of this plant.[ citation needed ]
Pukateine Structure.svg

Pukateine

Old Rimu in Kaitoke Park.jpg

Laurelia novae-zelandiae

Pukateine
Unknown RolliniaDeliciosa.jpg

Rollinia mucosa

Rollinia mucosa is said to be a narcotic. [118]
Leonurine structure.png

Leonurine

Leonotis leonurus flower.jpg

Leonotis leonurus

Both leaves and flowers (where most concentrated) contain Leonurine. (Effects reminiscent of marijuana)[ citation needed ]
Nicotine.svg

Nicotine [133]

Leucas aspera plant.jpg
Leucas aspera
Nicotine
Leonurine structure.png

Leonurine

Leonotis nepetifolia1.jpg

Leonotis nepetifolia

Both leaves and flowers (where most concentrated) contain Leonurine and several compounds. (Effects reminiscent of marijuana)[ citation needed ] [134]
Lobeline.svg

Lobeline

Lobelia inflata - Kohler-s Medizinal-Pflanzen-218.jpg

Lobelia inflata

Indian tobacco
Unknown Sweetbay Magnolia Magnolia virginiana Comparison 4400px.jpg

Magnolia virginiana

[6]
L-Scopolamin.svg Atropine.svg Hyoscyamine.svg

Tropane alkaloids (scopolamine, atropine, and hyoscyamine)

Mandragora officinarum 002.JPG

Mandragora officinarum

Mandrake has deliriant and anticholinergic properties. [119]
Ergine.svg

Ergine

2006-10-18Mirabilis jalapa10.jpg

Some Mirabilis spp.

Possibly contains ergine[ citation needed ], a hallucinogen.
Mitragynine.svg Mitragynine-pseudoindoxyl.svg

Mitragynine, Mitragynine pseudoindoxyl

Mitragyna speciosa111.JPG

Mitragyna speciosa

Usually referred to as kratom. Has opioid-like and stimulant properties. [135]
Myristicin.svg

Myristicin

Myristica fragrans - Kohler-s Medizinal-Pflanzen-097.jpg

Myristica fragrans

Nutmeg
Aporphine.svg

Aporphine

Sacred lotus Nelumbo nucifera.jpg

Nelumbo nucifera

Sacred lotus
Nepetalactone.svg

Nepetalactone

Catnip flowers.jpg

Nepeta cataria

Catnip
Nicotine.svg

Nicotine

Tabak P9290021.JPG

Nicotiana tabacum

Tobacco. Can cause hallucinations in very large doses.[ citation needed ]
Aporphine.svg

Aporphine, Apomorphine

Nymphaea caerulea.jpg

Nymphaea caerulea

Blue lotus or lily. Recent studies have shown Nymphaea caerulea to have psychedelic properties, and may have been used as a sacrament in ancient Egypt and certain ancient South American cultures. Dosages of 5 to 10 grams of the flowers induces slight stimulation, a shift in thought processes, enhanced visual perception, and mild closed-eye visuals. [136] Nymphaea caerulea is unrelated to Nelumbo nucifera the Sacred Lotus, with Nymphaea in the Nymphales, one of the oldest and most basal linegages of flowering plants and with Nelumbo in Proteales one of the core eudicots. Their morphological similarties being entirely convergent evolution, however they apparently have convergently evolved similar biochemistry. Both Nymphaea caerulea and Nelumbo nucifera contain the alkaloids nuciferine and apomorphine, which have been recently isolated by independent labs.[ citation needed ]

These psychoactive effects make Nymphaea caerulea a likely candidate (among several) for the lotus plant eaten by the mythical Lotophagi in Homer's Odyssey.

Used in aromatherapy, Nymphaea caerulea is purported to have a "divine" essence, bringing euphoria, heightened awareness and tranquility.[ citation needed ]

Other sources cite anti-spasmodic and sedative, purifying and calming properties.

Ginsenoside Rg1.png

Ginsenosides

Panax quinquefolius.jpg

Panax

Ginseng
Morphin - Morphine.svg

Morphine

Papaver somniferum - Kohler-s Medizinal-Pflanzen-102.jpg

Papaver somniferum

Opium. Widely used analgesic, native to the Old World. [137]
Unknown Pokeweed bush in Northumberland County, Pennsylvania.JPG

Phytolacca americana

Narcotic and toxic when the root is consumed. [118]
Yohimbine structure.svg

Yohimbine

Pau de cabinda.jpg

Pausinystalia johimbe

α2-adrenergic receptor antagonist.[ citation needed ]
Unknown Pedicularis densiflora mt. diablo.JPG

Pedicularis densiflora

Indian warrior
Kavalactone-general-numbered.svg

Kavalactones

Starr 040318-0058 Piper methysticum.jpg

Piper methysticum

An anxiolytic [138] and hypnotic. [139] Often advertised as a 'healthier' alternative to alcohol.[ citation needed ]
Ergine.svg

Ergine

Rivea corymbosa 1838.jpg

Rivea corymbosa

Seeds contain ergine, lysergol, and turbicoryn; lysergic acid alkaloids up to 0.03% [140] [ better source needed ] Has psychedelic properties.
Salvinorin A structure.svg

Salvinorin A

Salvia divinorum - Herba de Maria.jpg

Salvia divinorum

Salvinorin A, 0.89–3.87 mg/g, also Salvinorin B and Salvinorin C [141] [ unreliable source? ]
Mesembrine.svg
Mesembrine
Sceletium tortuosum 01102003 Afrique du sud 2.JPG

Sceletium tortuosum

Kanna [142] [143]
Baicalein.svg

Baicalein

Scutellaria pekinensis Yamatatsunamisou in Ibukiyama 2002-6-9.jpg

Scutellaria

Known commonly as 'skullcaps'. Baicalein is a positive allosteric modulator of GABAA receptor. [144]
Unknown Sessea brasiliensis.jpg

Sessea

S. brasiliensis poisoning is described as very similar to that of Cestrum laevigatum; a species used to induce hallucinations by the Krahô tribe for spiritual purposes. [145] [146]
Unknown Silene capensis (flowering).jpg

Silene capensis

Produces vivid dreams after smoking. [147]
Unknown Tagetes lemmonii flower.jpg

Tagetes lucida

Anethole, Chavicol, Coumarin, Estragole, Isorhamnetin, Methyleugenol, Quercitin
Ibogaine.svg

Ibogaine

Iboga.jpg

Tabernanthe iboga

Ibogaine in root bark. Produces psychedelic and a dissociative effects. [148] [149]
Ibogaine.svg

Ibogaine

Tabernanthe orientalis

Ibogaine in root leaves. Produces psychedelic and a dissociative effects. [148] [149]
Voacangine.svg Ibogaine.svg

Voacangine, Ibogaine

Crape Jasmine.jpg

Tabernaemontana divaricata

Is a psychedelic and a dissociative. [149]
Ibogaine.svg

Ibogaine

Tabernanthe pubescens

Is a psychedelic and a dissociative. Contains ibogaine and similar alkaloids. [148] [149]
Ibogaine.svg

Ibogaine

Tabernaemontana divaricata by kadavoor.jpg

Tabernaemontana sp.

Is a psychedelic and a dissociative. [148] [149]
Theobromine.svg

Theobromine

Matadecacao.jpg

Theobroma cacao

Cocoa or cacao bean, chocolate, native to the Americas
Ibogaine.svg

Ibogaine

Confederate Jasmine, Star Jasmine (Trachelospermum jasminoides).jpg

Trachelospermum jasminoides

Exhibits psychedelic and dissociative effects. Contains ibogaine, coronaridine, voacangine, apparicine, conoflorine, and 19-epi-voacangarine. [150] [ better source needed ] [151]
Valerenic acid.svg

Valerenic acid

Valeriana officinalis - Niitvalja.jpg

Valeriana officinalis

Possible sedative and anxiolytic effects. Valerenic acid is GABAA receptor positive allosteric modulator, [152] and a 5-HT5A receptor partial agonist. [153]
Vincamine.svg

Vincamine

Vinca minor Nashville.jpg

Vinca minor

Vincamine. [154]
Voacangine.svg

Voacangine

Voacanga Africana 06.jpg

Voacanga africana

Voacangine is similar in structure to ibogaine. It inhibits AChE. [155] [156]
Dendrobine.svg

Dendrobine [157]

Dendrobium nobile - flower view 01.jpg

Dendrobium nobile

Also contains phenanthrenes and dendrobine related alkaloids.
Genistein.svg Apigenin.svg

Possibly Genistein and Apigenin

Zornia latifolia Sm.jpg

Zornia latifolia

Zornia latifolia is sometimes combined with synthetic cannabis. It may produce similar effects to cannabis. [158] [159] It is nicknamed Maconha brava because locals use it as a cannabis substitute.[ citation needed ]

See also

Notes

  1. Other psychoactive compounds without nitrogen atoms include kavalactones and salvinorins, known from kava and Salvia divinorum , respectively.

Related Research Articles

<span class="mw-page-title-main">Ayahuasca</span> South American psychoactive brew

Ayahuasca is a South American psychoactive brew, traditionally used by Indigenous cultures and folk healers in the Amazon and Orinoco basins for spiritual ceremonies, divination, and healing a variety of psychosomatic complaints. Originally restricted to areas of Peru, Brazil, Colombia and Ecuador, in the middle of the 20th century it became widespread in Brazil in the context of the appearance of syncretic religions that use ayahuasca as a sacrament, like Santo Daime, União do Vegetal and Barquinha, which blend elements of Amazonian Shamanism, Christianity, Kardecist Spiritism, and African-Brazilian religions such as Umbanda, Candomblé and Tambor de Mina, later expanding to several countries across all continents, notably the United States and Western Europe, and, more incipiently, in Eastern Europe, South Africa, Australia, and Japan.

<i>N</i>,<i>N</i>-Dimethyltryptamine Chemical compound

N,N-Dimethyltryptamine is a substituted tryptamine that occurs in many plants and animals, including humans, and which is both a derivative and a structural analog of tryptamine. DMT is used as a psychedelic drug and prepared by various cultures for ritual purposes as an entheogen.

<i>Banisteriopsis caapi</i> Species of plant

Banisteriopsis caapi, also known as, caapi, soul vine, or yagé (yage), is a South American liana of the family Malpighiaceae. It is commonly used as an ingredient of ayahuasca, a decoction with a long history of its entheogenic use and its status as a "plant teacher" among the Indigenous peoples of the Amazon rainforest.

β-Carboline Chemical compound also known as norharmane

β-Carboline (9H-pyrido[3,4-b]indole) represents the basic chemical structure for more than one hundred alkaloids and synthetic compounds. The effects of these substances depend on their respective substituent. Natural β-carbolines primarily influence brain functions but can also exhibit antioxidant effects. Synthetically designed β-carboline derivatives have recently been shown to have neuroprotective, cognitive enhancing and anti-cancer properties.

<i>Phalaris arundinacea</i> Species of Plant

Phalaris arundinacea, or reed canary grass, is a tall, perennial bunchgrass that commonly forms extensive single-species stands along the margins of lakes and streams and in wet open areas, with a wide distribution in Europe, Asia, northern Africa and North America. Other common names for the plant include gardener's-garters and ribbon grass in English, alpiste roseau in French, Rohrglanzgras in German, kusa-yoshi in Japanese, caniço-malhado in Portuguese, and hierba cinta and pasto cinto in Spanish.

<span class="mw-page-title-main">Harmala alkaloid</span> Group of chemical compounds

Harmala alkaloids are several alkaloids that act as monoamine oxidase inhibitors (MAOIs). These alkaloids are found in the seeds of Peganum harmala, as well as Banisteriopsis Caapi (Ayahuasca), leaves of tobacco and coffee beans. The alkaloids include harmine, harmaline, harmalol, and their derivatives, which have similar chemical structures, hence the name "harmala alkaloids". These alkaloids are of interest for their use in Amazonian shamanism, where they are derived from other plants. Harmine, once known as telepathine and banisterine, is a naturally occurring beta-carboline alkaloid that is structurally related to harmaline, and also found in the vine Banisteriopsis caapi. Tetrahydroharmine is also found in B. caapi and P. harmala. Dr. Alexander Shulgin has suggested that harmine may be a breakdown product of harmaline. Harmine and harmaline are reversible inhibitors of monoamine oxidase A (RIMAs). They can stimulate the central nervous system by inhibiting the metabolism of monoamine compounds such as serotonin and norepinephrine.

<i>Psychotria viridis</i> Perennial flowering plant in the coffee family Rubiaceae

Psychotria viridis, also known as chacruna, chacrona, or chaqruy in the Quechua languages, is a perennial, shrubby flowering plant in the coffee family Rubiaceae. It is a close relative of Psychotria carthagenensis of Ecuador. It is commonly used as an ingredient of ayahuasca, a decoction with a long history of its entheogenic use and its status as a "plant teacher" among the Indigenous peoples of the Amazon rainforest.

Harmine is a beta-carboline and a harmala alkaloid. It occurs in a number of different plants, most notably the Syrian rue and Banisteriopsis caapi. Harmine reversibly inhibits monoamine oxidase A (MAO-A), an enzyme which breaks down monoamines, making it a Reversible inhibitor of monoamine oxidase A (RIMA). Harmine does not inhibit MAO-B. Harmine is also known as banisterin, banisterine, telopathin, telepathine, leucoharmine and yagin, yageine.

<span class="mw-page-title-main">Harmaline</span> Chemical compound

Harmaline is a fluorescent indole alkaloid from the group of harmala alkaloids and beta-carbolines. It is the partly hydrogenated form of harmine.

<i>Mimosa tenuiflora</i> Species of plant

Mimosa tenuiflora, syn. Mimosa hostilis, also known as jurema preta, calumbi (Brazil), tepezcohuite (México), carbonal, cabrera, jurema, black jurema, and binho de jurema, is a perennial tree or shrub native to the northeastern region of Brazil and found as far north as southern Mexico, and the following countries: El Salvador, Honduras, Panama, Colombia and Venezuela. It is most often found in lower altitudes, but it can be found as high as 1,000 m (3,300 ft).

Pharmahuasca is a pharmaceutical version of the entheogenic brew ayahuasca. Traditional ayahuasca is made by brewing the MAOI-containing Banisteriopsis caapi vine with a DMT-containing plant, such as Psychotria viridis. Pharmahuasca refers to a similar combination that uses a pharmaceutical MAOI instead of a plant.

<i>Diplopterys cabrerana</i> Species of plant

Diplopterys cabrerana is a shrub native to the Amazon Basin, spanning the countries of Brazil, Colombia, Ecuador and Peru. In the Quechua languages it is called chaliponga or chagropanga; in parts of Ecuador it is known as chacruna—a name otherwise reserved for Psychotria viridis.

<i>N</i>-Methyltryptamine Chemical compound

N-Methyltryptamine (NMT) is a member of the substituted tryptamine chemical class and a natural product which is biosynthesized in the human body from tryptamine by certain N-methyltransferase enzymes, such as indolethylamine N-methyltransferase. It is a common component in human urine. NMT is an alkaloid derived from L-tryptophan that has been found in the bark, shoots and leaves of several plant genera, including Virola, Acacia, Mimosa, and Desmanthus—often together with the related compounds N,N-dimethyltryptamine (DMT) and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT).

<span class="mw-page-title-main">Indole alkaloid</span> Class of alkaloids

Indole alkaloids are a class of alkaloids containing a structural moiety of indole; many indole alkaloids also include isoprene groups and are thus called terpene indole or secologanin tryptamine alkaloids. Containing more than 4100 known different compounds, it is one of the largest classes of alkaloids. Many of them possess significant physiological activity and some of them are used in medicine. The amino acid tryptophan is the biochemical precursor of indole alkaloids.

<i>Acacia obtusifolia</i> Species of legume

Acacia obtusifolia, commonly known as stiff-leaf wattle or blunt-leaf wattle, is a perennial tree in subfamily Mimosoideae of family Fabaceae.

<span class="mw-page-title-main">6-MeO-THH</span> Chemical compound

6-MeO-THH, or 6-methoxy-1,2,3,4-tetrahydroharman, is a β-carboline derivative and a structural isomer of tetrahydroharmine (7-MeO-THH). 6-MeO-THH is mentioned in Alexander Shulgin's book TiHKAL, stating that 6-MeO-THH is very similar to the other carbolines. Limited testing suggests that it possesses mild psychoactive effects at 1.5 mg/kg and is said to be about one-third as potent as 6-methoxyharmalan. It has been isolated from certain plants of the Virola family.

Many cacti are known to be psychoactive, containing phenethylamine alkaloids such as mescaline. However, the two main ritualistic (folkloric) genera are Echinopsis, of which the most psychoactive species occur in the San Pedro cactus group, and Lophophora, with peyote being the most psychoactive species. Several other species pertaining to other genera are also psychoactive, though not always used with a ritualistic intent.

<i>Acacia burkittii</i> Species of legume

Acacia burkittii is a species of wattle endemic to Western Australia, South Australia and western New South Wales, where it is found in arid zones, and is a perennial shrub in the family Fabaceae. Common names for it include Burkitt's wattle, fine leaf jam, gunderbluey, pin bush and sandhill wattle. It has also been introduced into India. Previously this species was referred to as Acacia acuminata subsp. burkittii, but is now considered to be a separate species. Grows in mallee, eucalypt and mulga woodland or shrubland, often on sandhills.

References

  1. Sayin, H. Umit (2016). "Psychoactive Plants Used during Religious Rituals". Neuropathology of Drug Addictions and Substance Misuse. Elsevier. pp. 17–28. doi:10.1016/b978-0-12-800634-4.00002-0. ISBN   9780128006344.
  2. Kohek, Maja; Sánchez Avilés, Constanza; Romaní, Oriol; Bouso, José Carlos (2021). "Ancient psychoactive plants in a global village: The ritual use of cannabis in a self-managed community in Catalonia". International Journal of Drug Policy. 98. Elsevier BV: 103390. doi:10.1016/j.drugpo.2021.103390. ISSN   0955-3959. PMID   34340169.
  3. "IJ PACHTER, DE ZACHARIAS, O RIBEIRO – The Journal of Organic Chemistry, 1959 -" (PDF). Pubs.acs.org. Retrieved 22 December 2017.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 "Trout's Notes on Some Other Succulents". Archived from the original on 2015-09-24. Retrieved 2015-01-14.
  5. "Profiles of Psychedelic Drugs". paranoia.lycaeum.org. Archived from the original on 2002-05-22. Retrieved 2008-04-19.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 Rätsch, Christian (25 April 2005). The Encyclopedia of Psychoactive Plants: Ethnopharmacology and Its Applications. Inner Traditions/Bear. ISBN   9781594776625 . Retrieved 22 December 2017 via Google Books.
  7. Macedo Pereira G, Moreira LG, Neto TD, Moreira de Almeida WA, Almeida-Lima J, Rocha HA, Barbosa EG, Zuanazzi JA, de Almeida MV, Grazul RM, Navarro-Vázquez A, Hallwass F, Ferreira LS, Fernandes-Pedrosa MF, Giordani RB (November 2018). "Isolation, spectral characterization, molecular docking, and cytotoxic activity of alkaloids from Erythroxylum pungens O. E. Shulz". Phytochemistry . 155: 12–18. Bibcode:2018PChem.155...12M. doi:10.1016/j.phytochem.2018.07.003. PMID   30056276. S2CID   51908961.
  8. "Lycaeum > Leda > Acacia acuminata". leda.lycaeum.org. Archived from the original on 2007-10-12. Retrieved 2008-02-23.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 "Plants & Seeds > A > Acacia spp". Shaman Australis Botanicals. Retrieved 14 January 2015.
  10. 1 2 3 4 Glasby, John Stephen (1991). Dictionary of Plants Containing Secondary Metabolites. CRC Press. p. 2. ISBN   978-0-85066-423-2.
  11. Nutritive value assessment of the tropical shrub legume Acacia angustissima: anti-nutritional compounds and in vitro digestibility. Personal Authors: McSweeney, C. S., Krause, D. O., Palmer, B., Gough, J., Conlan, L. L., Hegarty, M. P.Author Affiliation: CSIRO Livestock Industries, Long Pocket Laboratories, 120 Meiers Road, Indooroopilly, Qld 4068, Australia. Document Title: Animal Feed Science and Technology, 2005 (Vol. 121) (No. 1/2) 175–190
  12. "Maya Ethnobotanicals – Ayahuasca, Rainforest Plants, Folklore, Incenses, Art & Visions". Archived from the original on 25 October 2008. Retrieved 14 January 2015.
  13. 1 2 3 4 5 6 7 8 Black Panther. "Akacje". Herbarium.0–700.pl. Archived from the original on 18 July 2011. Retrieved 14 January 2015.
  14. "Lycaeum > Leda > Acacia auriculiformis". Leda.lycaeum.org. Archived from the original on 7 December 2008. Retrieved 14 January 2015.
  15. 1 2 3 4 5 6 7 Hegnauer, R. (1996-07-30). Caesalpinioideae und Mimosoideae. Springer. ISBN   9783764351656 . Retrieved 14 January 2015 via Books.google.com.
  16. 1 2 3 4 Australian Bush Food and Native Medicine Forum members. "Australian Bushfood (Bushtucker) and Native Medicine Forum". Bushfood.net. Archived from the original on 4 August 2014. Retrieved 14 January 2015.
  17. "Entheology.org – Preserving Ancient Knowledge". Entheology.org. Retrieved 22 December 2017.
  18. "Ask Dr. Shulgin Online September 26, 2001". Cognitiveliberty.org. Retrieved 14 January 2015.
  19. "Dr Karl's Q&A forum". Abc.net.au. Retrieved 14 January 2015.
  20. "comp phyto". Users.lycaeum.org. Archived from the original on 7 December 2008. Retrieved 14 January 2015.
  21. "acacias and entheogens". Users.lycaeum.org. Archived from the original on 7 December 2008. Retrieved 14 January 2015.
  22. "Lycaeum > Leda > Acacia complanata". Users.lycaeum.org. Archived from the original on 7 December 2008. Retrieved 14 January 2015.
  23. NMR spectral assignments of a new chlorotryptamine alkaloid and its analogues from Acacia confusa Malcolm S. Buchanan, Anthony R. Carroll, David Pass, Ronald J. Quinn Magnetic Resonance in Chemistry Volume 45, Issue 4, pp. 359–361. John Wiley & Sons, Ltd.
  24. "Naturheilpraxis – Fachforum – Die Heilkraft der Akazien – Ein einführender Überblick". 5 January 2010. Archived from the original on 5 January 2010. Retrieved 22 December 2017.
  25. "Lycaeum > Leda > Acacia cultriformis". Leda.lycaeum.org. Archived from the original on 7 December 2008. Retrieved 14 January 2015.
  26. 1 2 3 "Plant Choices – Phytochemeco Databases". Ars-grin.gov. Archived from the original on 27 December 2014. Retrieved 14 January 2015.
  27. 1 2 Vivid Interactive and Design. "Wattle Seed Workshop Proceedings" (PDF). Archived from the original (PDF) on 17 December 2008. Retrieved 14 January 2015.
  28. "www.bpi.da.gov.ph" (PDF). Archived from the original (PDF) on July 20, 2011.
  29. "Acacia farnesiana". Hort.purdue.edu. Retrieved 14 January 2015.
  30. 1 2 3 Hegnauer, Robert (1994). Chemotaxonomie der Pflanzen. Springer. p. 500. ISBN   978-3-7643-2979-2.
  31. "Lycaeum > Leda > Acacia floribunda". leda.lycaeum.org. Archived from the original on 2007-10-12. Retrieved 2008-02-23.
  32. Voogelbreinder, S. "Garden Of Eden" 2009
  33. 1 2 3 "Lista över hallucinogena växter, svampar och djur". Wiki.magiskamolekyler.org. Retrieved 14 January 2015.
  34. "Lycaeum > Leda > Acacia longifolia". leda.lycaeum.org. Archived from the original on 2007-04-18. Retrieved 2008-02-23.
  35. extentech.sheetster.com [ permanent dead link ]
  36. S. Voogelbreinder "Garden Of Eden" 2009
  37. "Lista över hallucinogena växter, svampar och djur – Magiska Molekylers Wiki". wiki.magiskamolekyler.org.
  38. "obtusifolia phyto". Users.lycaeum.org. Archived from the original on 3 December 2008. Retrieved 14 January 2015.
  39. Plants Containing DMT (German) Archived 2007-06-29 at the Wayback Machine
  40. "Acacia campylacantha – Hortipedia". www.hortipedia.org. Archived from the original on 2007-10-12. Retrieved 2008-02-23.
  41. Pawar, RS; Grundel, E; Fardin-Kia, AR; Rader, JI (January 2014). "Determination of selected biogenic amines in Acacia rigidula plant materials and dietary supplements using LC-MS/MS methods". Journal of Pharmaceutical and Biomedical Analysis. 88: 457–66. doi:10.1016/j.jpba.2013.09.012. PMID   24176750.
  42. "Chemistry of Acacias from South Texas" (PDF). Archived from the original (PDF) on May 15, 2011.
  43. "Eins". Factorey.ch. Archived from the original on 12 August 2008. Retrieved 22 December 2017.
  44. 1 2 3 4 5 6 Granier-Doyeux, Marcel (January 1, 1965). "Native hallucinogenic drugs piptadenias". United Nations Office on Drugs and Crime. Archived from the original on January 20, 2005. Retrieved February 28, 2019.
  45. 1 2 3 4 5 6 7 8 Dr. Duke's Archived 2004-11-10 at the Wayback Machine Phytochemical and Ethnobotanical Databases
  46. "Cultivo de Curupay, Cebil colorado (Anadenanthera colubrina) y usos, herbotecnia". Herbotecnia.com.ar. Retrieved 14 January 2015.
  47. "Bufo alvarius – Jonathan Ott on Bufotenine". Erowid.org. Retrieved 2008-02-23.
  48. Dr. Duke's Archived 2013-02-19 at the Wayback Machine Phytochemical and Ethnobotanical Databases
  49. Stafford, Peter (2013-02-18). Psychedelics Encyclopedia. Ronin. ISBN   9781579511692 . Retrieved 14 January 2015 via Books.google.com.
  50. Ott, J. (July–September 2001). "Pharmañopo-psychonautics: human intranasal, sublingual, intrarectal, pulmonary and oral pharmacology of bufotenine". Journal of Psychoactive Drugs. 33 (3): 273–81. doi:10.1080/02791072.2001.10400574. PMID   11718320. S2CID   5877023.
  51. 1 2 "Erowid Online Books : "Ayahuasca: alkaloids, plants, and analogs" by Keeper of the Trout". Erowid.org. Retrieved 14 January 2015.
  52. Hegnauer, R. (1996-07-30). Google Book Search. Springer. ISBN   978-3-7643-5165-6 . Retrieved 2008-05-08.
  53. "Desmodium caudatum". Germplasm Resources Information Network . Agricultural Research Service, United States Department of Agriculture . Retrieved 2008-05-02.
  54. 1 2 3 "Trout's Notes on Desmodium" (PDF). Archived from the original (PDF) on August 31, 2005.
  55. 1 2 3 4 5 6 7 8 9 "Erowid Psychoactive Vaults : Tryptamine FAQ". Erowid.org. Retrieved 14 January 2015.
  56. "Isolation and Identification of Putative Hallucinogenic Constituents from the Roots of Mimosa ophthalmocentra". Pharmaceutical Biology.
  57. Hegnauer, R. (1996-07-30). Google Book Search. Springer. ISBN   978-3-7643-5165-6 . Retrieved 2008-05-07.
  58. "Ask Erowid : ID 75 : What is the DMT content of Mimosa hostilis rootbark?". Erowid.org. Retrieved 14 January 2015.
  59. "UNODC Bulletin on Narcotics 1969". Archived from the original on 2007-07-08.
  60. Dart, Richard C. (2004). Medical Toxicology - Google Book Search. Lippincott Williams & Wilkins. ISBN   978-0-7817-2845-4 . Retrieved 2008-03-15.
  61. 1 2 3 4 5 "tryptamines: fungi". Bluezoo.org. Retrieved 14 January 2015.
  62. 1 2 3 4 5 6 7 8 9 [ permanent dead link ]
  63. "Kalifornischer Korallenstrauch (Erythrina decora) im GIFTPFLANZEN.COMpendium - giftpflanzen.com". Giftpflanzen.com. Retrieved 2008-04-18.
  64. "Plants Containing DMT List". Dmt-nexus.com. Retrieved 22 December 2017.[ permanent dead link ]
  65. Ott, Jonathan (1996). Pharmacotheon . Natural Products Company. p.  219. ISBN   9780961423483.
  66. "Species Information". sun.ars-grin.gov. Archived from the original on 2004-11-10. Retrieved 2008-04-11.
  67. 1 2 "5-MeO-DMT". Tryptamines.com. Retrieved 14 January 2015.
  68. "Committee for veterinary medicinal products virola sebifera summary report" (PDF). Archived from the original (PDF) on July 10, 2007.
  69. Peter R. Cheeke (1989). Toxicants of Plant Origin. CRC-Press. p. 169. ISBN   978-0-8493-6990-2 . Retrieved 2008-04-20 via books.google.com.
  70. "Erowid Arundo donax Vaults : Trout's Notes on Tryptamine Content of Arundo donax". Erowid.org. Retrieved 14 January 2015.
  71. 1 2 3 "DMT, Life and the Universe". Nepenthes.lycaeum.org. Archived from the original on 2008-06-18. Retrieved 14 January 2015.
  72. 1 2 3 "Erowid Phalaris Vault : FAQ 2.01". Erowid.org. Retrieved 14 January 2015.
  73. Wassel, G. M.; El-Difrawy, S.M.; Saeed, A.A. (1985). "Alkaloids from the Rhizomes of Phragmites australis Cav". Scientia Pharmaceutica. 53: 169–170.
  74. Rivier, Laurent; Lindgren, Jan-Erik (1972). ""Ayahuasca," the South American Hallucinogenic Drink: An Ethnobotanical and Chemical Investigation". Economic Botany. 26 (2): 101–129. doi:10.1007/BF02860772. ISSN   0013-0001. JSTOR   4253328. S2CID   34669901.
  75. "Psychotria – The Most Important Genera and Species from A to Z – The Encyclopedia of Psychoactive Plants: Ethnopharmacology and Its Applications".
  76. "Psychotria poeppigiana – Uragoga tomentosa". Discover Life. Retrieved 2013-10-14.
  77. "Amazing Nature". Amazing-nature.com. Archived from the original on 27 September 2007. Retrieved 22 December 2017.
  78. Servillo, L; Giovane, A; Balestrieri, ML; Cautela, D; Castaldo, D (Sep 2012). "N-methylated tryptamine derivatives in citrus genus plants: identification of N,N,N-trimethyltryptamine in bergamot". Journal of Agricultural and Food Chemistry. 60 (37): 9512–8. doi:10.1021/jf302767e. PMID   22957740.
  79. Servillo, L; Giovane, A; Balestrieri, ML; Casale, R; Cautela, D; Castaldo, D (May 2013). "Citrus genus plants contain N-methylated tryptamine derivatives and their 5-hydroxylated forms". Journal of Agricultural and Food Chemistry. 61 (21): 5156–62. doi:10.1021/jf401448q. PMID   23682903.
  80. Santos, Ana Paula; Moreno, Paulo Roberto Hrihorowitsch (Jun 2004). "Pilocarpus spp.: A survey of its chemical constituents and biologicalactivities". Brazilian Journal of Pharmaceutical Sciences. 40 (2): 116–137. doi: 10.1590/S1516-93322004000200002 . S2CID   34614172.
  81. 1 2 3 "Citrus Growers Manufacture Huge Amounts of DMT".
  82. 1 2 3 4 5 6 "Citrus Genus Plants Contain N-Methylated Tryptamine Derivatives and Their 5-Hydroxylated Forms".
  83. 1 2 3 "CitrusGenus Plants Contain N‑Methylated Tryptamine Derivativesand Their 5‑Hydroxylated Forms" (PDF).
  84. Meyer, B. N.; Helfrich, J. S.; Nichols, D. E.; McLaughlin, J. L.; Davis, D. V.; Cooks, R. G. (1983). "Cactus Alkaloids. LIII. Coryphanthine and O-Methyl-Candicine, Two New Quaternary Alkaloids from Coryphantha greenwoodii". Journal of Natural Products. 46 (5): 688–693. doi:10.1021/np50029a017.
  85. N. Meyer, B; S. Helfrich, J; Nichols, David; L. McLaughlin, J; V. Davis, D; G. Cooks, R (1 July 2004). "Cactus Alkaloids. LIII. Coryphanthine and O-Methyl-Candicine, Two New Quaternary Alkaloids from Coryphantha greenwoodii". Journal of Natural Products. 46 (5): 688–693. doi:10.1021/np50029a017 . Retrieved 22 December 2017 via ResearchGate.
  86. 1 2 3 4 5 6 "Descriptions of psychoactive Cacti". Users.lycaeum.org. Archived from the original on 15 July 2009. Retrieved 14 January 2015.
  87. "Cane Cholla (Cylindropuntia spinosior )". Desert-tropicals.com. Archived from the original on 29 December 2014. Retrieved 14 January 2015.
  88. "Partial List of Alkaloids in Trichocereus Cacti". Thenook.org. Archived from the original on 2009-02-11. Retrieved 2013-10-14.
  89. a1b2c3.com. "Trichocereus spp. Information". A1b2c3.com. Retrieved 22 December 2017.{{cite web}}: CS1 maint: numeric names: authors list (link)
  90. 1 2 3 "Partial List of Alkaloids in Trichocereus Cacti". Thennok.org. Archived from the original on 11 February 2009. Retrieved 22 December 2017.
  91. 1 2 3 4 Forbidden Fruit Archives Archived 2005-11-28 at the Wayback Machine
  92. "Echinopsis tacaquirensis ssp. taquimbalensis". Desert-tropicals.com. Archived from the original on 23 September 2015. Retrieved 14 January 2015.
  93. "Cardon Grande (Echinopsis terscheckii)". Desert-tropicals.com. Archived from the original on 5 April 2015. Retrieved 14 January 2015.
  94. 1 2 3 "Erowid Cacti Vaults : Visionary Cactus Guide – Mescaline from Sawdust". Erowid.org. Retrieved 14 January 2015.
  95. "Archived copy". users.lycaeum.org. Archived from the original on 8 March 2001. Retrieved 17 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  96. Venault P, Chapouthier G (2007). "From the behavioral pharmacology of beta-carbolines to seizures, anxiety, and memory". ScientificWorldJournal. 7: 204–23. doi: 10.1100/tsw.2007.48 . PMC   5901106 . PMID   17334612.
  97. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 "Cornell University Department of Animal Science". Ansci.cornell.edu. Retrieved 14 January 2015.
  98. Callaway, JC; Brito, GS; Neves, ES (2005). "Phytochemical analyses of Banisteriopsis caapi and Psychotria viridis". Journal of Psychoactive Drugs. 37 (2): 145–150. doi:10.1080/02791072.2005.10399795. PMID   16149327. S2CID   30736017.
  99. Glasby, J. S. (2002-09-11). Directory Of Plants Containing Secondary Metabolites. CRC Press. ISBN   9780203489871 . Retrieved 14 January 2015 via Books.google.com.
  100. "Chemical Information". sun.ars-grin.gov. Archived from the original on 2004-11-21. Retrieved 2008-04-11.
  101. "Silbrige Ayahuasca-Liane (Banisteriopsis muricata) im GIFTPFLANZEN.COMpendium". Giftpflanzen.com. Retrieved 2008-04-18.
  102. "Erowid Online Books : "Ayahuasca: alkaloids, plants, and analogs" by Keeper of the Trout". Erowid.org. Retrieved 22 December 2017.
  103. 1 2 "Passion Flower". Drugs.com. Retrieved 14 January 2015.
  104. "www.amazing-nature.com". Archived from the original on September 27, 2007.
  105. Ma, ZZ; Hano, Y; Nomura, T; Chen, YJ (April 2000). "Alkaloids and phenylpropanoids from Peganum nigellastrum". Phytochemistry . 53 (8): 1075–8. Bibcode:2000PChem..53.1075M. doi:10.1016/S0031-9422(99)00440-9. PMID   10820833 . Retrieved 2008-01-12.
  106. Matsumoto K, Horie S, Ishikawa H, Takayama H, Aimi N, Ponglux D, Watanabe K (March 2004). "Antinociceptive effect of 7-hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa". Life Sciences. 74 (17): 2143–2155. doi:10.1016/j.lfs.2003.09.054. PMID   14969718.
  107. Menzies, John R.W; Paterson, Stewart J.; Duwiejua, Mahama; Corbett, Alistair D. (1998). "Opioid activity of alkaloids extracted from Picralima nitida (Fam. Apocynaceae)". European Journal of Pharmacology. 350 (1): 101–108. doi:10.1016/s0014-2999(98)00232-5. PMID   9683021.
  108. Arens H, Borbe HO, Ulbrich B, Stöckigt J (December 1982). "Detection of pericine, a new CNS-active indole alkaloid from Picralima nitida cell suspension culture by opiate receptor binding studies". Planta Medica. 46 (4): 210–4. doi:10.1055/s-2007-971216. PMID   6298847. S2CID   7758884.
  109. Roberts MF, Wink M (30 June 1998). Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Springer. pp. 68–69. ISBN   978-0-306-45465-3.
  110. Verotta L, Pilati T, Tatò M, Elisabetsky E, Amador TA, Nunes DS (March 1998). "Pyrrolidinoindoline Alkaloids from Psychotria colorata1". Journal of Natural Products. 61 (3): 392–6. doi:10.1021/np9701642. PMID   9548883.
  111. Amador TA, Verotta L, Nunes DS, Elisabetsky E (December 2000). "Antinociceptive profile of hodgkinsine". Planta Medica. 66 (8): 770–2. doi:10.1055/s-2000-9604. PMID   11199142. S2CID   260283293.
  112. Mitaine, A. C.; Mesbah, K; Richard, B; Petermann, C; Arrazola, S; Moretti, C; Zèches-Hanrot, M; Men-Olivier, L. L. (1996). "Alkaloids from Aspidosperma species from Bolivia". Planta Medica. 62 (5): 458–61. doi:10.1055/s-2006-957939. PMID   17252481. S2CID   260251185.
  113. Voigt, V; Laug, L; Zebisch, K; Thondorf, I; Markwardt, F; Brandsch, M (2013). "Transport of the areca nut alkaloid arecaidine by the human proton-coupled amino acid transporter 1 (hPAT1)". The Journal of Pharmacy and Pharmacology. 65 (4): 582–90. doi: 10.1111/jphp.12006 . PMID   23488788. S2CID   27577546.
  114. Johnston, G. A. R.; Krogsgaard-Larsen, P.; Stephanson, A. (1975). "Betel nut constituents as inhibitors of γ-aminobutyric acid uptake". Nature. 258 (5536): 627–628. Bibcode:1975Natur.258..627J. doi:10.1038/258627a0. ISSN   0028-0836. PMID   1207742. S2CID   4147760.
  115. Ghelardini C, Galeotti N, Lelli C, Bartolini A (2001). "Arecoline M1 receptor activation is a requirement for arecoline analgesia". Il Farmaco. 56 (5–7): 383–5. doi:10.1016/S0014-827X(01)01091-6. hdl: 2158/327019 . PMID   11482763.
  116. Halpern, J.H. (2004). "Hallucinogens and dissociative agents naturally growing in the United States". Pharmacology & Therapeutics. 102 (2): 131–138. doi:10.1016/j.pharmthera.2004.03.003. PMID   15163594. S2CID   30734515. Although LSD does not occur in nature, a close analogue, lysergic acid amide (LSA, ergine) is found in the seeds of Argyreia nervosa (Hawaiian baby woodrose)
  117. Olsen, Richard W. (2000-04-25). "Absinthe and γ-aminobutyric acid receptors". Proceedings of the National Academy of Sciences of the United States of America. 97 (9): 4417–4418. Bibcode:2000PNAS...97.4417O. doi: 10.1073/pnas.97.9.4417 . ISSN   0027-8424. PMC   34311 . PMID   10781032.
  118. 1 2 3 Denise Otsuka, Rafaela; Otsuka, Rafaela Denise; Lago, Joao Henrique Ghilardi; Rossi, Lucia; Galduroz, Jose Carlos Fernandes; Rodrigues, Eliana (2010). "Psychoactive Plants Described in a Brazilian Literary Work and their Chemical Compounds". Central Nervous System Agents in Medicinal Chemistry. 10 (3): 218–237. doi:10.2174/1871524911006030218. PMID   20557283 via www.academia.edu.
  119. 1 2 3 Kennedy, David O. (2014). "The Deliriants – The Nightshade (Solanaceae) Family". Plants and the Human Brain. New York: Oxford University Press. pp. 131–137. ISBN   9780199914012. LCCN   2013031617.
  120. Cleversley, Keith (2002-01-01). "Brunfelsia grandiflora - Manaca". Entheology.com. Retrieved 2024-04-03.
  121. Sałaga, Maciej; Fichna, Jakub; Socała, Katarzyna; Nieoczym, Dorota; Pieróg, Mateusz; Zielińska, Marta; Kowalczuk, Anna; Wlaź, Piotr (2016). "Neuropharmacological characterization of the oneirogenic Mexican plant Calea zacatechichi aqueous extract in mice". Metabolic Brain Disease. 31 (3): 631–641. doi:10.1007/s11011-016-9794-1. ISSN   0885-7490. PMC   4863909 . PMID   26821073.
  122. Al Zarouni, Yousif (2015). The Effects of Khat (Catha Edulis) (First ed.). London: Yousif Al Zarouni. p. 5. ISBN   978-1-326-24867-3.
  123. "Protected Blog". Sliceoftheday. Retrieved 14 January 2015.[ dead link ]
  124. Silvarolla, Maria B.; Mazzafera, Paulo; Fazuoli, Luiz C. (2004). "Plant biochemistry: A naturally decaffeinated arabica coffee". Nature . 429 (6994): 826. Bibcode:2004Natur.429..826S. doi: 10.1038/429826a . PMID   15215853. S2CID   4428420.
  125. "Atropine". The American Society of Health-System Pharmacists. Archived from the original on 2015-07-12. Retrieved Aug 13, 2015.
  126. Osbourn AE, Lanzotti V (2009). Plant-derived Natural Products: Synthesis, Function, and Application. Springer Science & Business Media. p. 5. ISBN   9780387854984. Archived from the original on 10 September 2017.
  127. Fatur, Karsten (7 January 2021). "Peculiar plants and fantastic fungi: An ethnobotanical study of the use of hallucinogenic plants and mushrooms in Slovenia". PLOS ONE. 16 (1): e0245022. Bibcode:2021PLoSO..1645022F. doi: 10.1371/journal.pone.0245022 . PMC   7790546 . PMID   33412556.
  128. Dallanoce C, Frigerio F, Martelli G, Grazioso G, Matera C, Pomè DY, et al. (2010). "Novel tricyclic Δ2-isoxazoline and 3-oxo-2-methyl-isoxazolidine derivatives: Synthesis and binding affinity at neuronal nicotinic acetylcholine receptor subtypes". Bioorganic & Medicinal Chemistry. 18 (12): 4498–4508. doi:10.1016/j.bmc.2010.04.065. ISSN   0968-0896. PMID   20478710.
  129. Schultes, Richard Evans, Iconography of New World Plant Hallucinogens. p. 101
  130. Rovinskiĭ VI (Sep 1989). "A case of hallucinogen-like action of glaucine. (Russian)". Klinicheskaia Meditsina (Mosk). 67 (9): 107–8. PMID   2586025.
  131. "Erowid Sinicuichi Vault : FAQ (heimia salicifolia Frequently Asked Questions)". Erowid.org. Retrieved 14 January 2015.
  132. "Trichterwinde (Ipomoea violacea) im GIFTPFLANZEN.COMpendium". Giftpflanzen.com. Retrieved 2008-04-18.
  133. Mangathayaru, K; Thirumurugan, D; Patel, PS; Pratap, DV.V; David, DJ; Karthikeyan, J (2006). "Isolation and identification of nicotine from leucas aspera (willd) link". Indian Journal of Pharmaceutical Sciences. 68 (1): 88. doi: 10.4103/0250-474X.22972 . ISSN   0250-474X. S2CID   54509667.
  134. Hunter, E.; Stander, M.; Kossmann, J.; Chakraborty, S.; Prince, S.; Peters, S.; Loedolff, Bianke (2020-11-10). "Toward the identification of a phytocannabinoid-like compound in the flowers of a South African medicinal plant (Leonotis leonurus)". BMC Research Notes. 13 (1): 522. doi: 10.1186/s13104-020-05372-z . ISSN   1756-0500. PMC   7653773 . PMID   33172494.
  135. Eastlack, Steven C.; Cornett, Elyse M.; Kaye, Alan D. (2020). "Kratom—Pharmacology, Clinical Implications, and Outlook: A Comprehensive Review". Pain and Therapy. 9 (1): 55–69. doi:10.1007/s40122-020-00151-x. ISSN   2193-8237. PMC   7203303 . PMID   31994019.
  136. Seligman, Sian (2023-01-13). "Blue Lotus Flower: Smoking, Tea & More". DoubleBlind Mag. Retrieved 2023-01-18.
  137. "Opium definition". Drugs.com . Retrieved 28 April 2022.
  138. Pittler MH, Ernst E (2003). Pittler, Max H (ed.). "Kava extract for treating anxiety". Cochrane Database of Systematic Reviews. 2003 (1): CD003383. doi:10.1002/14651858.CD003383. PMC   6999799 . PMID   12535473.
  139. Baker, Jonathan D. (2011-06-01). "Tradition and toxicity: evidential cultures in the kava safety debate". Social Studies of Science. 41 (3): 361–384. doi:10.1177/0306312710395341. ISSN   0306-3127. PMID   21879526. S2CID   33364504.
  140. "Ololiuqui (Rivea corymbosa) im GIFTPFLANZEN.COMpendium". Giftpflanzen.com. Retrieved 2008-04-18.
  141. "Salvia divinorum Clones". Sagewisdom.org. Retrieved 14 January 2015.[ dead link ]
  142. Coetzee, Dirk D.; López, Víctor; Smith, Carine (2016-01-11). "High-mesembrine Sceletium extract (Trimesemine™) is a monoamine releasing agent, rather than only a selective serotonin reuptake inhibitor". Journal of Ethnopharmacology. 177: 111–116. doi:10.1016/j.jep.2015.11.034. ISSN   0378-8741. PMID   26615766.
  143. Manganyi, Madira Coutlyne; Bezuidenhout, Cornelius Carlos; Regnier, Thierry; Ateba, Collins Njie (2021-04-28). "A Chewable Cure "Kanna": Biological and Pharmaceutical Properties of Sceletium tortuosum". Molecules (Basel, Switzerland). 26 (9): 2557. doi: 10.3390/molecules26092557 . ISSN   1420-3049. PMC   8124331 . PMID   33924742.
  144. Hui KM, Wang XH, Xue H (2000). "Interaction of flavones from the roots of Scutellaria baicalensis with the benzodiazepine site". Planta Med. 66 (1): 91–3. doi:10.1055/s-0029-1243121. PMID   10705749. S2CID   260249283.
  145. "Poisoning by Sessea brasiliensis Toledo in cattle". Poisoning by Sessea Brasiliensis Toledo in Cattle. 1965.
  146. Rodrigues, Eliana; Carlini, E.A. (2006). "Plants with possible psychoactive effects used by the Krahô Indians, Brazil". Revista Brasileira de Psiquiatria. 28 (4): 277–282. doi: 10.1590/s1516-44462006000400006 . PMID   17242806.
  147. J. F. Sobiecki (2008). "A review of plants used in divination in southern Africa and their psychoactive effects". Southern African Humanities. 20: 333–351. S2CID   37305695.
  148. 1 2 3 4 "Erowid Online Books : "TIHKAL" – #25 IBOGAINE". Erowid.org. Retrieved 14 January 2015.
  149. 1 2 3 4 5 Krengel F, Herrera Santoyo J, Olivera Flores TJ, Chávez Ávila VM, Pérez Flores FJ, Reyes Chilpa R (December 2016). "Quantification of Anti-Addictive Alkaloids Ibogaine and Voacangine in In Vivo- and In Vitro-Grown Plants of Two Mexican Tabernaemontana Species". Chemistry & Biodiversity. 13 (12): 1730–1737. doi:10.1002/cbdv.201600146. PMID   27448833. S2CID   46046257.
  150. Dr. B. Bös. "Sternjasmin (Trachelospermum jasminoides) im GIFTPFLANZEN.COMpendium - giftpflanzen.com". Giftpflanzen.com. Retrieved 14 January 2015.
  151. "Indole Alkaloids from Trachelospermum jasminoides".[ dead link ]
  152. Luger D, Poli G, Wieder M, Stadler M, Ke S, Ernst M, Hohaus A, Linder T, Seidel T, Langer T, Khom S, Hering S (2015). "Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site-directed mutagenesis". Br. J. Pharmacol. 172 (22): 5403–13. doi:10.1111/bph.13329. PMC   4988470 . PMID   26375408.
  153. Dietz, B.; Mahady, G.; Pauli, G.; Farnsworth, N. (2005). "Valerian extract and valerenic acid are partial agonists of the 5-HT receptor in vitro". Molecular Brain Research. 138 (2): 191–197. doi:10.1016/j.molbrainres.2005.04.009. PMC   5805132 . PMID   15921820.
  154. Khanavi, M.; Pourmoslemi, S.; Farahanikia, B.; Hadjiakhoondi, A.; Ostad, S. N. (2010). "Cytotoxicity ofVinca minor". Pharmaceutical Biology. 48 (1): 96–100. doi: 10.3109/13880200903046187 . PMID   20645762. S2CID   42993549.
  155. VIEIRA I, MEDEIROS W, MONNERAT C, SOUZA J, MATHIAS L, BRAZ-FILHO R, PINTO A, SOUSA P, REZENDE C, EPIFANIO R (2008). "Two fast screening methods (GC-MS and TLC-ChEI assay) for rapid evaluation of potential anticholinesterasic indole alkaloids in complex mixtures" (PDF). Annals of the Brazilian Academy of Sciences. 80 (3): 419–426. doi:10.1590/s0001-37652008000300003. ISSN   0001-3765. PMID   18797794. Archived from the original (PDF) on 2020-02-19.
  156. Andrade MT, Lima JA, Pinto AC, Rezende CM, Carvalho MP, Epifanio RA (June 2005). "Indole alkaloids from Tabernaemontana australis (Muell. Arg) Miers that inhibit acetylcholinesterase enzyme". Bioorganic & Medicinal Chemistry . 13 (12): 4092–5. doi:10.1016/j.bmc.2005.03.045. PMID   15911323.
  157. Duke, James A. (2017-10-24). Handbook of Phytochemical Constituent Grass, Herbs and Other Economic Plants: Herbal Reference Library (2 ed.). New York: Routledge. ISBN   978-0-203-75262-3.
  158. Cornara, L.; Fortuna-Perez, A. P.; Bruni, I.; Salis, A.; Damonte, G.; Borghesi, B.; Clericuzio, M. (2018-09-01). "Zornia latifolia: a smart drug being adulterated by Stylosanthes guianensis". International Journal of Legal Medicine. 132 (5): 1321–1331. doi:10.1007/s00414-018-1774-z. hdl: 11449/164509 . ISSN   1437-1596. PMID   29362872. S2CID   12630518.
  159. Fattore, Liana; Fratta, Walter (2011). "Beyond THC: The New Generation of Cannabinoid Designer Drugs". Frontiers in Behavioral Neuroscience. 5: 60. doi: 10.3389/fnbeh.2011.00060 . ISSN   1662-5153. PMC   3187647 . PMID   22007163.

Bibliography