Lixiviant

Last updated

A lixiviant is a chemical used in hydrometallurgy to extract elements from its ore. [1] [2] One of the most famous lixiviants is cyanide, which is used in extracting 90% of mined gold. The combination of cyanide and air converts gold particles into a soluble salt. Once separated from the bulk gangue, the solution is processed in a series of steps to give the metal. [3]

Contents

Etymology

The origin is the word 'lixiviate', meaning to leach or to dissolve out, deriving from the Latin lixivium. [4] A lixiviant assists in rapid and complete leaching, for example during in situ leaching. The metal can be recovered from it in a concentrated form after leaching.

Further reading

Related Research Articles

<span class="mw-page-title-main">Mining</span> Extraction of valuable minerals or other geological materials from the Earth

Mining is the extraction of valuable geological materials and minerals from the surface of the Earth. Mining is required to obtain most materials that cannot be grown through agricultural processes, or feasibly created artificially in a laboratory or factory. Ores recovered by mining include metals, coal, oil shale, gemstones, limestone, chalk, dimension stone, rock salt, potash, gravel, and clay. The ore must be a rock or mineral that contains valuable constituent, can be extracted or mined and sold for profit. Mining in a wider sense includes extraction of any non-renewable resource such as petroleum, natural gas, or even water.

<span class="mw-page-title-main">Summitville mine</span>

The Summitville mine was a gold mining site in the United States, located in Rio Grande County, Colorado 25 miles (40 km) south of Del Norte. It is remembered for the environmental damage caused in the 1980s by the leakage of mining by-products into local waterways and then the Alamosa River.

Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, washing, concentration, separation, chemical processes and extraction of pure metal and their alloying to suit various applications, sometimes for direct use as a finished product, but more often in a form that requires further working to achieve the given properties to suit the applications.

<span class="mw-page-title-main">Open-pit mining</span> Surface mining technique

Open-pit mining, also known as open-cast or open-cut mining and in larger contexts mega-mining, is a surface mining technique of extracting rock or minerals from the earth from an open-air pit, sometimes known as a borrow.

Gold cyanidation is a hydrometallurgical technique for extracting gold from low-grade ore by converting the gold to a water-soluble coordination complex. It is the most commonly used leaching process for gold extraction. Cyanidation is also widely used in the extraction of silver, usually after froth flotation.

Hydrometallurgy is a technique within the field of extractive metallurgy, the obtaining of metals from their ores. Hydrometallurgy involve the use of aqueous solutions for the recovery of metals from ores, concentrates, and recycled or residual materials. Processing techniques that complement hydrometallurgy are pyrometallurgy, vapour metallurgy, and molten salt electrometallurgy. Hydrometallurgy is typically divided into three general areas:

<span class="mw-page-title-main">Gold extraction</span> Process of extracting gold from ore

Gold extraction is the extraction of gold from dilute ores using a combination of chemical processes. Gold mining produces about 3600 tons annually, and another 300 tons is produced from recycling.

Carbon in pulp (CIP) is an extraction technique for recovery of gold which has been liberated into a cyanide solution as part of the gold cyanidation process.

<span class="mw-page-title-main">Electrowinning</span> Electrolytic extraction process

Electrowinning, also called electroextraction, is the electrodeposition of metals from their ores that have been put in solution via a process commonly referred to as leaching. Electrorefining uses a similar process to remove impurities from a metal. Both processes use electroplating on a large scale and are important techniques for the economical and straightforward purification of non-ferrous metals. The resulting metals are said to be electrowon.

<span class="mw-page-title-main">Heap leaching</span> Industrial mining process used to extract precious metals from ore

Heap leaching is an industrial mining process used to extract precious metals, copper, uranium, and other compounds from ore using a series of chemical reactions that absorb specific minerals and re-separate them after their division from other earth materials. Similar to in situ mining, heap leach mining differs in that it places ore on a liner, then adds the chemicals via drip systems to the ore, whereas in situ mining lacks these liners and pulls pregnant solution up to obtain the minerals. Heap leaching is widely used in modern large-scale mining operations as it produces the desired concentrates at a lower cost compared to conventional processing methods such as flotation, agitation, and vat leaching.

Dump leaching is an industrial process to extract precious metals and copper from ores.

Biomining is the technique of extracting metals from ores and other solid materials typically using prokaryotes, fungi or plants. These organisms secrete different organic compounds that chelate metals from the environment and bring it back to the cell where they are typically used to coordinate electrons. It was discovered in the mid 1900s that microorganisms use metals in the cell. Some microbes can use stable metals such as iron, copper, zinc, and gold as well as unstable atoms such as uranium and thorium. Large chemostats of microbes can be grown to leach metals from their media. These vats of culture can then be transformed into many marketable metal compounds. Biomining is an environmentally friendly technique compared to typical mining. Mining releases many pollutants while the only chemicals released from biomining is any metabolites or gasses that the bacteria secrete. The same concept can be used for bioremediation models. Bacteria can be inoculated into environments contaminated with metals, oils, or other toxic compounds. The bacteria can clean the environment by absorbing these toxic compounds to create energy in the cell. Bacteria can mine for metals, clean oil spills, purify gold, and use radioactive elements for energy.

<span class="mw-page-title-main">In situ leach</span>

In-situ leaching (ISL), also called in-situ recovery (ISR) or solution mining, is a mining process used to recover minerals such as copper and uranium through boreholes drilled into a deposit, in situ. In situ leach works by artificially dissolving minerals occurring naturally in a solid state. For recovery of material occurring naturally in solution, see: Brine mining.

Leaching is a process widely used in extractive metallurgy where ore is treated with chemicals to convert the valuable metals within into soluble salts while the impurity remains insoluble. These can then be washed out and processed to give the pure metal; the materials left over are commonly known as tailings. Compared to pyrometallurgy, leaching is easier to perform, requires less energy and is potentially less harmful as no gaseous pollution occurs. Drawbacks of leaching include its lower efficiency and the often significant quantities of waste effluent and tailings produced, which are usually either highly acidic or alkali as well as toxic.

<span class="mw-page-title-main">Outline of mining</span> Overview of and topical guide to mining

The following outline is provided as an overview of and topical guide to mining:

The International Cyanide Management Code for the Manufacture, Transport and Use of Cyanide in the Production of Gold, commonly referred to as the Cyanide Code, is a voluntary program designed to assist the global gold and silver mining industries and the producers and transporters of cyanide used in gold and silver mining in improving cyanide management practices and to publicly demonstrate their compliance with the Cyanide Code through an independent and transparent process. The Cyanide Code is intended to reduce the potential exposure of workers and communities to harmful concentrations of cyanide‚ limit releases of cyanide to the environment‚ and enhance response actions in the event of an exposure or release.

The Newbery-Vautin chlorination process is a method for extracting gold from its ore through the use of chlorination. This process was jointly developed by James Cosmo Newbery and Claude Vautin.

A gold cyanidation ban refers to the legislation that bans mining gold through the gold cyanidation technique.

<span class="mw-page-title-main">Regolith-hosted rare earth element deposits</span>

Regolith-hosted rare earth element deposits are rare-earth element (REE) ores in decomposed rocks that are formed by intense weathering of REE-rich parental rocks in subtropical areas. In these areas, rocks are intensely broken and decomposed. Then, REEs infiltrate downward with rain water and they are concentrated along a deeper weathered layer beneath the ground surface.

Mineral processing and extraction of metals are very energy-intensive processes, which are not exempted of producing large volumes of solid residues and wastewater, which also require energy to be further treated and disposed. Moreover, as the demand for metals increases, the metallurgical industry must rely on sources of materials with lower metal contents both from a primary and/or secondary raw materials. Consequently, mining activities and waste recycling must evolve towards the development of more selective, efficient and environmentally friendly mineral and metal processing routes.

References

  1. American Institute of Mining Engineers (1917). Transactions of the American Institute of Mining Engineers, Volume 49. Princeton University: The Institute. p. 617.
  2. Mular, Andrew; Halbe, Doug; Barratt, Derek, eds. (2002), Mineral Processing Plant Design, Practice, and Control Proceedings, Vancouver, Canada: Society of Mining Engineers, p. 1631, ISBN   0-87335-223-8
  3. Renner, Hermann; Schlamp, Günther; Hollmann, Dieter; Lüschow, Hans Martin; Tews, Peter; Rothaut, Josef; Dermann, Klaus; Knödler, Alfons; Hecht, Christian; Schlott, Martin; Drieselmann, Ralf; Peter, Catrin; Schiele, Rainer (2000). "Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_499. ISBN   3527306730.
  4. The New English Dictionary