Locomotor mimicry

Last updated

Locomotor mimicry is a subtype of Batesian mimicry in which animals avoid predation by mimicking the movements of another species phylogenetically separated. [1] This can be in the form of mimicking a less desirable species or by mimicking the predator itself. [1] Animals can show similarity in swimming, walking, or flying of their model animals.

Contents

The complex interaction between mimics, models, and predators (sometimes called observers) can help explain similarities amongst species beyond ideas that emerge from evolutionary comparative approaches. [2] In terms of overall movement, the continuous locomotor mimicry of a species that differs anatomically from the mimic may increase metabolic cost. However, the benefit of avoiding predation appears to outweigh the increased energy cost, because mimicking animals tend to have higher survival rates than their non-mimicking counterparts. [3]

Terrestrial locomotor mimicry

Ant Mimic Spider (Myrmarachne sp.) (left) with a worker Rattle Ant (Polyrhachis australis), the ant species that the spider mimics Myrmarachne and ant.jpg
Ant Mimic Spider ( Myrmarachne sp.) (left) with a worker Rattle Ant (Polyrhachis australis), the ant species that the spider mimics

The most common form of locomotor terrestrial mimicry is found in ant-mimicking spiders. [4] These mimics are capable of antennal illusions and similar gait patterns as an ant, which is shown in the jumping spider family (Araneae, Salticidae). [2] Ants appear to be beneficial models because they possess effective protective traits such as, chemical defences, and aggressiveness. Spiders, however, lack some of these specialized traits and therefore by acting as an ant, may avoid predation because the predator has less desire for ants.

Mimetic jumping spiders imitate the zig-zag trajectories of ants, which appears to be beneficial for avoiding predators that are from an elevated vantage point. [2] However, this may be an example of imperfect mimicry because the spiders display this behaviour in settings where ants do not.

It was once thought that these ant-mimicking spiders walk on 6 legs instead of 8 so that they could use a set of legs to mimic ant antennae. [5] However, further analysis revealed that the spiders only do this whilst stationary, which leads to the assumption that there may be a limit to the neural circuitry underlying limb movement that does not allow them to move on 6 legs. [2] This antennal mimicry appears to be most beneficial whilst in a close proximity to a predator.

Another example of terrestrial locomotor mimicry is seen in salticid-mimicking moths. [3] The moths fan out their hind wings and their forewings are raised above their bodies. In this position, the moth's wings look like salticid legs. Moths that resemble the appearance and locomotion of predatory spiders are preyed upon less by the spiders. [6] The spiders will even display courtship or territorial behaviour towards the mimics, indicating that the spiders misidentify the moths as conspecifics. [6] Even if the spiders eventually eat the moths, the time it takes for the first attack to occur is longer than the time taken to attack non-mimetic moths.

Aerial locomotor mimicry

In butterflies, it is thought that palatability to predators is related to flight components. [7] Typically, fast-flying prey are more palatable, whereas unpalatable species tend to fly more slowly. These flight characteristics could help predators recognize prey as being palatable or unpalatable. Researchers compared the flight patterns of palatable non-mimetic, palatable mimetic, and unpalatable butterflies by looking at directional flight changes of each species. [7] It was determined that the palatable mimetic butterfly species had a significantly different flight pattern compared to the palatable non-mimetic. The palatable mimetic species had a flight pattern that resembled that of their unpalatable models.

Another example of aerial locomotor mimicry is found in the common drone fly (Eristalis tenax) and its presumed model, the western honey bee (Apis mellifera). [8] In analyses of flight sequences, flight velocities, flight trajectories, and time spent hovering, it was found that the flight patterns of common drone flies were more similar to honey bees than to that of other flies. The drone flies and their models both exhibit loops in their flight paths, which is surprising for the drone flies because they are very adept fliers. [8] A likely explanation for this flight behaviour is that, while foraging, the drone flies are at increased risk of predation by birds and therefore they alter their flying to resemble the noxious honeybee and avoid predation. [8]

Inanimate object locomotor mimicry

The ghost pipefish is able to blend into its surroundings due to its similarity in colour and motion to sea plants. [9] [10] In order to avoid predators, the organism will sway in the water to resemble underwater vegetation as much as possible.

See also

Related Research Articles

<span class="mw-page-title-main">Mimicry</span> Imitation of another species for selective advantage

In evolutionary biology, mimicry is an evolved resemblance between an organism and another object, often an organism of another species. Mimicry may evolve between different species, or between individuals of the same species. Often, mimicry functions to protect a species from predators, making it an anti-predator adaptation. Mimicry evolves if a receiver perceives the similarity between a mimic and a model and as a result changes its behaviour in a way that provides a selective advantage to the mimic. The resemblances that evolve in mimicry can be visual, acoustic, chemical, tactile, or electric, or combinations of these sensory modalities. Mimicry may be to the advantage of both organisms that share a resemblance, in which case it is a form of mutualism; or mimicry can be to the detriment of one, making it parasitic or competitive. The evolutionary convergence between groups is driven by the selective action of a signal-receiver or dupe. Birds, for example, use sight to identify palatable insects and butterflies, whilst avoiding the noxious ones. Over time, palatable insects may evolve to resemble noxious ones, making them mimics and the noxious ones models. In the case of mutualism, sometimes both groups are referred to as "co-mimics". It is often thought that models must be more abundant than mimics, but this is not so. Mimicry may involve numerous species; many harmless species such as hoverflies are Batesian mimics of strongly defended species such as wasps, while many such well-defended species form Müllerian mimicry rings, all resembling each other. Mimicry between prey species and their predators often involves three or more species.

<span class="mw-page-title-main">Batesian mimicry</span> Bluffing imitation of a strongly defended species

Batesian mimicry is a form of mimicry where a harmless species has evolved to imitate the warning signals of a harmful species directed at a predator of them both. It is named after the English naturalist Henry Walter Bates, who worked on butterflies in the rainforests of Brazil.

<span class="mw-page-title-main">Anti-predator adaptation</span> Defensive feature of prey for selective advantage

Anti-predator adaptations are mechanisms developed through evolution that assist prey organisms in their constant struggle against predators. Throughout the animal kingdom, adaptations have evolved for every stage of this struggle, namely by avoiding detection, warding off attack, fighting back, or escaping when caught.

<span class="mw-page-title-main">Viceroy (butterfly)</span> Species of butterfly

The viceroy is a North American butterfly. It was long thought to be a Batesian mimic of the monarch butterfly, but since the viceroy is also distasteful to predators, it is now considered a Müllerian mimic instead.

<span class="mw-page-title-main">Müllerian mimicry</span> Mutually beneficial mimicry of strongly defended species

Müllerian mimicry is a natural phenomenon in which two or more well-defended species, often foul-tasting and sharing common predators, have come to mimic each other's honest warning signals, to their mutual benefit. The benefit to Müllerian mimics is that predators only need one unpleasant encounter with one member of a set of Müllerian mimics, and thereafter avoid all similar coloration, whether or not it belongs to the same species as the initial encounter. It is named after the German naturalist Fritz Müller, who first proposed the concept in 1878, supporting his theory with the first mathematical model of frequency-dependent selection, one of the first such models anywhere in biology.

<span class="mw-page-title-main">Aposematism</span> Honest signalling of an animals powerful defences

Aposematism is the advertising by an animal, whether terrestrial or marine, to potential predators that it is not worth attacking or eating. This unprofitability may consist of any defenses which make the prey difficult to kill and eat, such as toxicity, venom, foul taste or smell, sharp spines, or aggressive nature. These advertising signals may take the form of conspicuous coloration, sounds, odours, or other perceivable characteristics. Aposematic signals are beneficial for both predator and prey, since both avoid potential harm.

<span class="mw-page-title-main">Crypsis</span> Aspect of animal behaviour and morphology

In ecology, crypsis is the ability of an animal or a plant to avoid observation or detection by other animals. It may be a predation strategy or an antipredator adaptation. Methods include camouflage, nocturnality, subterranean lifestyle and mimicry. Crypsis can involve visual, olfactory or auditory concealment. When it is visual, the term cryptic coloration, effectively a synonym for animal camouflage, is sometimes used, but many different methods of camouflage are employed by animals or plants.

<span class="mw-page-title-main">Ant mimicry</span> Animals that resemble ants

Ant mimicry or myrmecomorphy is mimicry of ants by other organisms; it has evolved over 70 times. Ants are abundant all over the world, and potential predators that rely on vision to identify their prey, such as birds and wasps, normally avoid them, because they are either unpalatable or aggressive. Some arthropods mimic ants to escape predation, while some predators of ants, especially spiders, mimic them anatomically and behaviourally in aggressive mimicry. Ant mimicry has existed almost as long as ants themselves; the earliest ant mimics in the fossil record appear in the mid-Cretaceous alongside the earliest ants.

<i>Anatea formicaria</i> Species of spider

Anatea formicaria is an ant-mimicking spider. It is only known from the rain forest of New Caledonia. Before 1967, it was considered to belong to the family Clubionidae. It was placed there based on the ant-like outward modifications and male genitalia, which superficially resemble those of the genus Micaria. In fact it is closely related to the genera Euryopis and possibly Achaearanea.

<span class="mw-page-title-main">Automimicry</span> Mimicry of part of own body, e.g. the head

In zoology, automimicry, Browerian mimicry, or intraspecific mimicry, is a form of mimicry in which the same species of animal is imitated. There are two different forms.

<i>Heliconius</i> Genus of brush-footed butterflies

Heliconius comprises a colorful and widespread genus of brush-footed butterflies commonly known as the longwings or heliconians. This genus is distributed throughout the tropical and subtropical regions of the New World, from South America as far north as the southern United States. The larvae of these butterflies eat passion flower vines (Passifloraceae). Adults exhibit bright wing color patterns which signal their distastefulness to potential predators.

<span class="mw-page-title-main">Aggressive mimicry</span> Deceptive mimicry of a harmless species by a predator

Aggressive mimicry is a form of mimicry in which predators, parasites, or parasitoids share similar signals, using a harmless model, allowing them to avoid being correctly identified by their prey or host. Zoologists have repeatedly compared this strategy to a wolf in sheep's clothing. In its broadest sense, aggressive mimicry could include various types of exploitation, as when an orchid exploits a male insect by mimicking a sexually receptive female, but will here be restricted to forms of exploitation involving feeding. For example, indigenous Australians who dress up as and imitate kangaroos when hunting would not be considered aggressive mimics, nor would a human angler, though they are undoubtedly practising self-decoration camouflage. Treated separately is molecular mimicry, which shares some similarity; for instance a virus may mimic the molecular properties of its host, allowing it access to its cells. An alternative term, Peckhamian mimicry, has been suggested, but it is seldom used.

<span class="mw-page-title-main">Emsleyan mimicry</span> Mimicry of a less deadly species

Emsleyan mimicry, also called Mertensian mimicry, describes an unusual type of mimicry where a deadly prey mimics a less dangerous species.

<span class="mw-page-title-main">Chemical mimicry</span> Biological mimicry using chemicals

Chemical mimicry is a type of biological mimicry involving the use of chemicals to dupe an operator.

<span class="mw-page-title-main">Mimicry in plants</span>

In evolutionary biology, mimicry in plants is where a plant organism evolves to resemble another organism physically or chemically, increasing the mimic's Darwinian fitness. Mimicry in plants has been studied far less than mimicry in animals, with fewer documented cases and peer-reviewed studies. However, it may provide protection against herbivory, or may deceptively encourage mutualists, like pollinators, to provide a service without offering a reward in return.

<i>Animal Coloration</i> (book) 1892 book by Frank Evers Beddard

Animal Coloration, or in full Animal Coloration: An Account of the Principal Facts and Theories Relating to the Colours and Markings of Animals, is a book by the English zoologist Frank Evers Beddard, published by Swan Sonnenschein in 1892. It formed part of the ongoing debate amongst zoologists about the relevance of Charles Darwin's theory of natural selection to the observed appearance, structure, and behaviour of animals, and vice versa.

Deception in animals is the transmission of misinformation by one animal to another, of the same or different species, in a way that propagates beliefs that are not true.

<i>Camponotus planatus</i> Species of ant

Camponotus planatus, known generally as the compact carpenter ant or short carpenter ant, is one of three Camponotus species that is polygynous, or has more than one queen. It is a species of ant.

<i>Mallophora bomboides</i> Species of fly

Mallophora bomboides, also known as the Florida bee killer, is a predaceous species of robber fly of the family Asilidae that feeds primarily on bumblebees. M. bomboides is a noteworthy instance of Batesian mimicry given its close resemblance to its prey, the bumblebee. These bees are typically found in the Eastern and Southern regions of the United States like South Carolina and Florida.

In evolutionary biology, mimicry in vertebrates is mimicry by a vertebrate of some model, deceiving some other animal, the dupe. Mimicry differs from camouflage as it is meant to be seen, while animals use camouflage to remain hidden. Visual, olfactory, auditory, biochemical, and behavioral modalities of mimicry have been documented in vertebrates.

References

  1. 1 2 Srygley, Robert. "Incorporating Motion into Investigations of mimicry". Evolutionary Ecology.
  2. 1 2 3 4 Shamble, Paul S.; Hoy, Ron R.; Cohen, Itai; Beatus, Tsevi (2017-07-12). "Walking like an ant: a quantitative and experimental approach to understanding locomotor mimicry in the jumping spider Myrmarachne formicaria". Proc. R. Soc. B. 284 (1858): 20170308. doi:10.1098/rspb.2017.0308. ISSN   0962-8452. PMC   5524487 . PMID   28701553.
  3. 1 2 Rota, Jadranka; Wagner, David L. (2006-12-20). "Predator Mimicry: Metalmark Moths Mimic Their Jumping Spider Predators". PLOS ONE. 1 (1): e45. Bibcode:2006PLoSO...1...45R. doi: 10.1371/journal.pone.0000045 . ISSN   1932-6203. PMC   1762363 . PMID   17183674.
  4. Wickler, Wolfgang (1968). Mimicry in plants and animals. New York: McGraw-Hill.
  5. Reiskind, Jonathan (1977). "Ant-Mimicry in Panamanian Clubionid and Salticid Spiders (Araneae: Clubionidae, Salticidae)". Biotropica. 9 (1): 1–8. doi:10.2307/2387854. JSTOR   2387854.
  6. 1 2 Wang, Mu-Yun; Vasas, Vera; Chittka, Lars; Yen, Shen-Horn (2017). "Sheep in wolf's clothing: multicomponent traits enhance the success of mimicry in spider-mimicking moths". Animal Behaviour. 127: 219–224. doi:10.1016/j.anbehav.2017.03.020. S2CID   35428343.
  7. 1 2 Kitamura, Tasuku; Imafuku, Michio (2015-06-22). "Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes". Proc. R. Soc. B. 282 (1809): 20150483. doi:10.1098/rspb.2015.0483. ISSN   0962-8452. PMC   4590450 . PMID   26041360.
  8. 1 2 3 Golding, Y. C.; Ennos, A. R.; Edmunds, M. (January 2001). "Similarity in flight behaviour between the honeybee Apis mellifera (Hymenoptera: apidae) and its presumed mimic, the dronefly Eristalis tenax (Diptera: syrphidae)". The Journal of Experimental Biology. 204 (Pt 1): 139–145. doi: 10.1242/jeb.204.1.139 . ISSN   0022-0949. PMID   11104717.
  9. "Solenostomus paradoxus". fishesofaustralia.net.au. Retrieved 2017-11-17.
  10. MarinePhage (2010-03-10), Motion Mimicry , retrieved 2017-11-17