Logical abacus

Last updated

A logical abacus is a mechanical digital computer.

Jevons' Logic Piano in the Sydney Powerhouse Museum in 2006 William Stanley Jevons Logic Piano.jpg
Jevons' Logic Piano in the Sydney Powerhouse Museum in 2006

Also referred to as a "logical machine", the logical abacus is analogous to the ordinary (mathematical) abacus. It is based on the principle of truth tables.

It is constructed to show all the possible combinations of a set of logical terms with their negatives, and, further, the way in which these combinations are affected by the addition of attributes or other limiting words, i.e., to simplify mechanically the solution of logical problems. These instruments are all more or less elaborate developments of the "logical slate", on which were written in vertical columns all the combinations of symbols or letters which could be made logically out of a definite number of terms. These were compared with any given premises, and those which were incompatible were crossed off. In the abacus the combinations are inscribed each on a single slip of wood or similar substance, which is moved by a key; incompatible combinations can thus be mechanically removed at will, in accordance with any given series of premises.

The principal examples of such machines are those of William Stanley Jevons (logic piano), [1] [2] John Venn, [3] and Allan Marquand. [4] [5]

Related Research Articles

<span class="mw-page-title-main">Syllogism</span> Type of logical argument that applies deductive reasoning

A syllogism is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.

Classical logic is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy.

<span class="mw-page-title-main">History of logic</span> Study of the history of the science of valid inference

The history of logic deals with the study of the development of the science of valid inference (logic). Formal logics developed in ancient times in India, China, and Greece. Greek methods, particularly Aristotelian logic as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic.

Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. if it is impossible for the premises to be true and the conclusion to be false.

<span class="mw-page-title-main">Venn diagram</span> Diagram that shows all possible logical relations between a collection of sets

A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science. A Venn diagram uses simple closed curves drawn on a plane to represent sets. Very often, these curves are circles or ellipses.

<span class="mw-page-title-main">William Stanley Jevons</span> English economist and logician

William Stanley Jevons was an English economist and logician.

<span class="mw-page-title-main">John Venn</span> English logician and philosopher (1834–1923)

John Venn, FRS, FSA was an English mathematician, logician and philosopher noted for introducing Venn diagrams, which are used in logic, set theory, probability, statistics, and computer science. In 1866, Venn published The Logic of Chance, a groundbreaking book which espoused the frequency theory of probability, arguing that probability should be determined by how often something is forecast to occur as opposed to "educated" assumptions. Venn then further developed George Boole's theories in the 1881 work Symbolic Logic, where he highlighted what would become known as Venn diagrams.

In philosophy, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by his followers, the Peripatetics. It was revived after the third century CE by Porphyry's Isagoge.

Inductive reasoning is a method of reasoning in which a general principle is derived from a body of observations. It consists of making broad generalizations based on specific observations. Inductive reasoning is distinct from deductive reasoning, where the conclusion of a deductive argument is certain given the premises are correct; in contrast, the truth of the conclusion of an inductive argument is probable, based upon the evidence given.

<span class="mw-page-title-main">Euler diagram</span> Graphical set representation involving overlapping circles

An Euler diagram is a diagrammatic means of representing sets and their relationships. They are particularly useful for explaining complex hierarchies and overlapping definitions. They are similar to another set diagramming technique, Venn diagrams. Unlike Venn diagrams, which show all possible relations between different sets, the Euler diagram shows only relevant relationships.

Allan Marquand was an art historian at Princeton University and a curator of the Princeton University Art Museum.

In philosophy, a formal fallacy, deductive fallacy, logical fallacy or non sequitur is a pattern of reasoning rendered invalid by a flaw in its logical structure that can neatly be expressed in a standard logic system, for example propositional logic. It is defined as a deductive argument that is invalid. The argument itself could have true premises, but still have a false conclusion. Thus, a formal fallacy is a fallacy where deduction goes wrong, and is no longer a logical process. This may not affect the truth of the conclusion, since validity and truth are separate in formal logic.

A logical machine is a tool containing a set of parts that uses energy to perform formal logic operations. Early logical machines were mechanical devices that performed basic operations in Boolean logic. Contemporary logical machines are computer-based electronic programs that perform proof assistance with theorems in mathematical logic. In the 21st century, these proof assistant programs have given birth to a new field of study called mathematical knowledge management.

<span class="mw-page-title-main">Karnaugh map</span> Graphical method to simplify Boolean expressions

The Karnaugh map is a method of simplifying Boolean algebra expressions. Maurice Karnaugh introduced it in 1953 as a refinement of Edward W. Veitch's 1952 Veitch chart, which was a rediscovery of Allan Marquand's 1881 logical diagram aka Marquand diagram but with a focus now set on its utility for switching circuits. Veitch charts are also known as Marquand–Veitch diagrams or, rarely, as Svoboda charts, and Karnaugh maps as Karnaugh–Veitch maps.

In logic, specifically in deductive reasoning, an argument is valid if and only if it takes a form that makes it impossible for the premises to be true and the conclusion nevertheless to be false. It is not required for a valid argument to have premises that are actually true, but to have premises that, if they were true, would guarantee the truth of the argument's conclusion. Valid arguments must be clearly expressed by means of sentences called well-formed formulas.

Philosophy of logic is the area of philosophy that studies the scope and nature of logic. It investigates the philosophical problems raised by logic, such as the presuppositions often implicitly at work in theories of logic and in their application. This involves questions about how logic is to be defined and how different logical systems are connected to each other. It includes the study of the nature of the fundamental concepts used by logic and the relation of logic to other disciplines. According to a common characterization, philosophical logic is the part of the philosophy of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. But other theorists draw the distinction between the philosophy of logic and philosophical logic differently or not at all. Metalogic is closely related to the philosophy of logic as the discipline investigating the properties of formal logical systems, like consistency and completeness.

Logical consequence is a fundamental concept in logic which describes the relationship between statements that hold true when one statement logically follows from one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises? All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth.

<span class="mw-page-title-main">Logic</span> Study of correct reasoning

Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics.

In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as ∧, disjunction (or) denoted as ∨, and the negation (not) denoted as ¬. Elementary algebra, on the other hand, uses arithmetic operators such as addition, multiplication, subtraction and division. Boolean algebra is therefore a formal way of describing logical operations, in the same way that elementary algebra describes numerical operations.

References

  1. Jevons, William Stanley. "xxiii". Elementary Lessons in Logic.
  2. Barrett, Lindsay; Connell, Matthew (2005). "Jevons and the Logic 'Piano'". Rutherford Journal . 1.
  3. Venn, John (1894). Symbolic logic (2nd ed.). London: Macmillan. p. 135f via Internet Archive.
  4. Marquand, Allan (1883). Johns Hopkins University Studies in Logic.
  5. Marquand, Allan (1885). American Academy of Arts and Sciences. pp. 303–7.


Wikisource-logo.svg This article incorporates text from a publication now in the public domain : Chisholm, Hugh, ed. (1911). "Abacus". Encyclopædia Britannica . Vol. 1 (11th ed.). Cambridge University Press. pp. 5–6.