Luciano Rezzolla

Last updated
Luciano Rezzolla
LucianoRezzolla2017.jpg
Born (1967-09-25) 25 September 1967 (age 56)
Nationality Italian
OccupationProfessor of Theoretical Astrophysics
Known for Numerical relativity, Relativistic astrophysics, blitzar
AwardsKarl Schwarzschild Preis 2017, ERC Synergy Grant 2013

Luciano Rezzolla (born 1967) is an Italian professor of relativistic astrophysics and numerical relativity at the Goethe University Frankfurt. His main field of study is the physics and astrophysics of compact objects such as black holes and neutron stars. It was announced in 2019 that he had been appointed honorary Andrews Professor of Astronomy at Trinity College Dublin (TCD). [1]

Contents

Education

Born in Milan, Italy, in 1967, Rezzolla completed his undergraduate degree in physics at the University of Bari and University of Trieste. After a year in the Italian Navy as submarine officer, he studied at SISSA and received his PhD in 1997 under the supervision of John C. Miller. [2]

Academic career

After completing a postdoc at the University of Illinois at Urbana–Champaign studying black holes and neutron stars, he returned to SISSA as a research fellow, and ultimately an associate professor. In 2006 he became head of the numerical relativity group at the Max Planck Institute for Gravitational Physics in Potsdam, Germany specialising in the numerical simulations of binary black holes and binary neutron stars. [3] In 2013, he moved to Goethe University to fill the chair of theoretical astrophysics. [2] Since 2017, he is the Director of the Institute for Theoretical Physics in Frankfurt.

Together with collaborators in 2001, he has shown that r-modes in a neutron star will generate differential rotation, which could amplify the magnetic field and suppress the instability. In 2003, he proposed that the QPOs that are measured in harmonic ratios in high-mass X-ray binaries can be explained simply in terms of trapped p-mode oscillations of an accretion torus around the black hole. [4] Together with collaborators in 2011, he showed that the merger of magnetised neutron stars leads to the formation of a black hole and highly magnetised torus from which a magnetic jet structure develops which provides a link between the theoretical modelling and observation of a jet in short gamma-ray bursts. [5] In 2013, together with Heino Falcke he has proposed that blitzars could be an explanation for fast radio bursts. [6] Blitzars would occur when a supramassive rotating neutron star slows down enough, loses its magnetic field and then turns into a black hole. [7] [8] He has also worked on gravastars and found that the merger of black holes from GW150914 is not consistent with the gravastar model. [9] [10] [11]

Alongside Heino Falcke and Michael Kramer, he received a 14 million euro research grant of the European Research Council (Synergy Grant) for further studies into black holes [12] with the goal to construct a black hole camera [13] using the Event Horizon Telescope (EHT). This would allow testing of general theory of relativity by creating an image of the black hole shadow. Starting from 2015, and as a member of the Executive Board of the collaboration Event Horizon Telescope, he has contributed to the international effort of producing the first image of a supermassive black hole at the center of the supergiant elliptical galaxy Messier 87 (M87). Together with his group in Frankfurt, and using numerical simulations of plasma accreting onto black holes, he has contributed to the theoretical interpretation of the observational data.

His awards include the Karl-Schwarzchild Prize (2017), the Frankfurt Physics Science Prize (2019) the NSF Diamond Achievement Award, the Breakthrough Prize in Fundamental Physics (both in 2019 and shared with EHT Collaboration), and the "Golden Seal" from the University of Bari. He has also been appointed "Outstanding Personality 2019" from Frankfurt am Main City Council (2019). In 2020 he was awarded an Advanced ERC Grant (Jetset) to study the launching and propagation of relativistic jets.

With Olindo Zanotti, he has written a textbook "Relativistic Hydrodynamics", [14] that is universally recognised as the standard reference on this topic.

Public Outreach

Rezzolla has always dedicated his attention to the diffusion of his scientific results, especially through the use of advanced visualisations of his simulations. One simulation on gamma-ray bursts has received more than five hundred thousands views on YouTube, while another simulation on the tidal disruption of neutron stars has also attracted a lot of attention with almost a million views, eventually ending-up on the New York Times.

In 2020 he has published his first public-outreach book "The irresistible attraction of gravity", first appeared in Italian and then in other languages, such as German and English.

Personal life

Rezzolla is an avid sailor [2] and currently lives in Potsdam with his wife, Carolin Schneider, and three children, Anna, Emilia and Dominik.

Bibliography

Related Research Articles

<span class="mw-page-title-main">Black hole</span> Object that has a no-return boundary

A black hole is a region of spacetime where gravity is so strong that nothing, including light and other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

A strange star is a hypothetical astronomical object, a quark star made of strange quark matter.

A gravastar is an object hypothesized in astrophysics by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has usual black hole metric outside of the horizon, but de Sitter metric inside. On the horizon there is a thin shell of matter. The term "gravastar" is a portmanteau of the words "gravitational vacuum star".

In fluid mechanics and astrophysics, the relativistic Euler equations are a generalization of the Euler equations that account for the effects of general relativity. They have applications in high-energy astrophysics and numerical relativity, where they are commonly used for describing phenomena such as gamma-ray bursts, accretion phenomena, and neutron stars, often with the addition of a magnetic field. Note: for consistency with the literature, this article makes use of natural units, namely the speed of lightand the Einstein summation convention.

<span class="mw-page-title-main">Astrophysical jet</span> Beam of ionized matter flowing along the axis of a rotating astronomical object

An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as extended beams along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets become relativistic jets as they show effects from special relativity.

<span class="mw-page-title-main">PSR J0737−3039</span> Double pulsar in the constellation Puppis

PSR J0737−3039 is the first known double pulsar. It consists of two neutron stars emitting electromagnetic waves in the radio wavelength in a relativistic binary system. The two pulsars are known as PSR J0737−3039A and PSR J0737−3039B. It was discovered in 2003 at Australia's Parkes Observatory by an international team led by the Italian radio astronomer Marta Burgay during a high-latitude pulsar survey.

A dark-energy star is a hypothetical compact astrophysical object, which a minority of physicists think might constitute an alternative explanation for observations of astronomical black hole candidates.

<span class="mw-page-title-main">Max Planck Institute for Gravitational Physics</span>

The Max Planck Institute for Gravitational Physics is a Max Planck Institute whose research is aimed at investigating Einstein's theory of relativity and beyond: Mathematics, quantum gravity, astrophysical relativity, and gravitational-wave astronomy. The institute was founded in 1995 and is located in the Potsdam Science Park in Golm, Potsdam and in Hannover where it closely collaborates with the Leibniz University Hannover. Both the Potsdam and the Hannover parts of the institute are organized in three research departments and host a number of independent research groups.

The following outline is provided as an overview of and topical guide to black holes:

<span class="mw-page-title-main">Remo Ruffini</span>

Remo Ruffini. He is the Director of ICRANet, International Centre for Relativistic Astrophysics Network and the President of the International Centre for Relativistic Astrophysics (ICRA). Ruffini initiated the International Relativistic Astrophysics PhD, a common graduate school program of several universities and research institutes for the education of theoretical astrophysicists. He is the Director of the Erasmus Mundus IRAP PhD program. He has been Professor of Theoretical Physics at the University of Rome "Sapienza" from 1978 to 2012.

The Hans A. Bethe Prize, is presented annually by the American Physical Society. The prize honors outstanding work in theory, experiment or observation in the areas of astrophysics, nuclear physics, nuclear astrophysics, or closely related fields. The prize consists of $10,000 and a certificate citing the contributions made by the recipient.

<span class="mw-page-title-main">Tsvi Piran</span> Israeli theoretical physicist and astrophysicist (born 1949)

Tsvi Piran is an Israeli theoretical physicist and astrophysicist, best known for his work on Gamma-ray Bursts (GRBs) and on numerical relativity. The recipient of the 2019 EMET prize award in Physics and Space Research.

<span class="mw-page-title-main">Computational astrophysics</span> Methods and computing tools developed and used in astrophysics research

Computational astrophysics refers to the methods and computing tools developed and used in astrophysics research. Like computational chemistry or computational physics, it is both a specific branch of theoretical astrophysics and an interdisciplinary field relying on computer science, mathematics, and wider physics. Computational astrophysics is most often studied through an applied mathematics or astrophysics programme at PhD level.

In astronomy, blitzars are a hypothetical type of neutron star, specifically pulsars that can rapidly collapse into black holes if their spinning slows down. Heino Falcke and Luciano Rezzolla proposed these stars in 2013 as an explanation for fast radio bursts.

<span class="mw-page-title-main">Heino Falcke</span>

Heino Falcke is a German Dutch professor of radio astronomy and astroparticle physics at the Radboud University Nijmegen. He was a winner of the 2011 Spinoza Prize. His main field of study is black holes, and he is the originator of the concept of the 'black hole shadow'. In 2013, a team under his lead earned a 14 million euro research grant from the European Research Council to further studies of black holes. In 2019, Falcke announced the first Event Horizon Telescope results at the EHT Press Conference in Brussels.

<span class="mw-page-title-main">First observation of gravitational waves</span> 2015 direct detection of gravitational waves by the LIGO and VIRGO interferometers

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole. The signal was named GW150914. It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

Stuart Louis Shapiro is an American theoretical astrophysicist, who works on numerical relativity with applications in astrophysics, specialising in compact objects such as neutron stars and black holes.

Reva Kay Williams is a theoretical astrophysicist. She is the first person to successfully work out the Penrose process using Einstein's Theory of Relativity to extract energy from black holes. Also, she is the first Black American woman to earn a PhD in theoretical astrophysics. Her work focuses on general relativistic astrophysics.

<span class="mw-page-title-main">Ramesh Narayan (astrophysicist)</span> Indian-American theoretical astrophysicist

Ramesh Narayan is an Indian-American theoretical astrophysicist, currently the Thomas Dudley Cabot Professor of the Natural Sciences in the Department of Astronomy at Harvard University. Full member of the National Academy of Sciences, Ramesh Narayan is widely known for his contributions on the theory of black hole accretion processes. Recently he is involved in the Event Horizon Telescope project, which led in 2019 to the first image of the event horizon of a black hole.

Monika Mościbrodzka is a Polish astrophysicist who is a professor at Radboud University Nijmegen. She is an expert in general relativistic plasma dynamics and numerical astrophysics. She was part of the Event Horizon Telescope team who contributed to the first direct image of a black hole, supermassive black hole M87*. She was awarded the 2022 Dutch Research Council Athena Prize and the 2023 Royal Astronomical Society Eddington Medal.

References

  1. Luciano Rezzolla awarded prestigious honorary professorship Goethe University: 11, Oktober 2019
  2. 1 2 3 "Luciano Rezzolla, Prof. Dr".
  3. http://www.aei.mpg.de/124545/Brighter_than_a_billion_suns [ dead link ]
  4. Rezzolla, L.; Yoshida, S'i.; Maccarone, T. J.; Zanotti, O. (2003). "A new simple model for high-frequency quasi-periodic oscillations in black hole candidates". Monthly Notices of the Royal Astronomical Society. 344 (3): L37–L41. arXiv: astro-ph/0307487 . Bibcode:2003MNRAS.344L..37R. doi:10.1046/j.1365-8711.2003.07018.x. ISSN   0035-8711. S2CID   16320198.
  5. Rezzolla, Luciano; Giacomazzo, Bruno; Baiotti, Luca; Granot, Jonathan; Kouveliotou, Chryssa; Aloy, Miguel A. (2011). "The Missing Link: Merging Neutron Stars Naturally Produce Jet-Like Structures and Can Power Short Gamma-Ray Bursts". The Astrophysical Journal. 732 (1): L6. arXiv: 1101.4298 . Bibcode:2011ApJ...732L...6R. doi:10.1088/2041-8205/732/1/L6. ISSN   2041-8205. S2CID   50276249.
  6. Govert Schilling (4 July 2013). "Mystery radio bursts blamed on black hole 'blitzars'". New Scientist . Retrieved 26 July 2015.
  7. "Afscheidsgroet van een stervende ster" (in Dutch). Radboud University Nijmegen. 4 July 2013. Retrieved 26 July 2015.[ permanent dead link ]
  8. John Timmer (8 July 2013). "Possible explanation for radio bursts: Meet the "blitzar"". Ars Technica (in Dutch). Retrieved 26 July 2015.
  9. Chirenti, Cecilia; Rezzolla, Luciano (2016-10-11). "Did GW150914 produce a rotating gravastar?". Physical Review D. 94 (8): 084016. arXiv: 1602.08759 . Bibcode:2016PhRvD..94h4016C. doi:10.1103/PhysRevD.94.084016. S2CID   16097346. we conclude it is not possible to model the measured ringdown of GW150914 as due to a rotating gravastar.
  10. "Did LIGO detect black holes or gravastars?". ScienceDaily . October 19, 2016. Retrieved 2017-11-04.
  11. "LIGO's black hole detection survives the gravastar test - ExtremeTech". ExtremeTech. 2016-10-26. Retrieved 2017-11-04.
  12. https://blackholecam.org/
  13. Govert Schilling (4 January 2014). "Maken we over vijf jaar foto's van zwarte gaten?". de Volkskrant (in Dutch). Retrieved 25 July 2015.
  14. Rezzolla, Luciano; Zanotti, Olindo (2013). Relativistic Hydrodynamics.
  15. Greenawalt, Marc (2022-12-02). "Spring 2023 Announcements: Science". Publishers Weekly. Retrieved 2022-12-14.