MC2 Biotek

Last updated

MC2 Biotek
Industry Biotechnology
Founded2006
Headquarters,
Denmark  OOjs UI icon edit-ltr-progressive.svg

MC2 Biotek is a biotechnology company established in 2006, [1] with offices in Denmark and external labs in the United Kingdom. [2] MC2 is a holding company, comprising three smaller Biotechnology companies with their own biotechnology solutions, they are: DrugMode (DK), [3] Zadec (DK), [4] and Drug Delivery Solutions (UK). [5] DrugMode specializes in 3D cell culture, and is based out of the University of Southern Denmark at Odense. Zadec focuses on Diabetes and nutrition, and has developed an oral anti-diabetes drug, RX-1, which is currently in clinical trials. Drug Delivery Solutions works in the field of dermatology and ophthalmology, developing topical drugs such as a cream to treat psoriasis. [1]

Contents

Technology

Drug Delivery Solutions Limited, the Leatherhead daughter company of MC2 biotech, has developed a new method for drug formulation and delivery. This biliquid foam technology was patented as polyaphron dispersions (PAD) containing a complex internal phase, which are made as droplets of oil or multiphase liquid in an aqueous (or other hydrogen-bonding liquid) phase. [6] Oil-soluble drug molecules can be dissolved within the oil phase, and drug delivery can be influenced by modifying the materials used in each phase. [7] A 2008 PAD patent claims that this foam-like emulsion is stable with up to at least 70% dispersed oil phase and at most 3% surfactant. [7] This PAD drug delivery system can allow for extended release drug delivery in enteral route of administration, or it can be formulated to be administered as a wound dressing. [7] Manufacturing using this technology is simple and low cost compared to gastroretentive dosage forms (GRDF) in the prior art. [7] MC2 Biotek's PAD technology has been applied commercially in dermatology and ophthalmology. [1]

MC2 Biotek is collaborating with a group of South African researchers led by Dr. Johan Louw at the Medical Research Council (MRC) and Professor Lizette Joubert at the Agricultural Research Council (ARC) to research traditional rooibos and honeybush teas for their anti-diabetic and anti-obesity properties. [8] One collaborative study showed that aqueous hot water honeybush extract when administered orally to type-2 diabetes rat models, promoted normoglycemia and improved other type-2 diabetes associated problems.[ citation needed ]

MC2 Biotek has also developed a 3D ProtoTissue™ Bioreactor, which allows cells from an immortal human hepatocyte line to grow into 3D spheroids. [9] 3D tissue cultures in vitro have been shown to be much more representative of in vivo tissue than traditionally used 2D tissue cultures in vitro are. MC2 Biotek proposes that these 3D hepatocyte cultures be used in drug trials to evaluate toxicology and metabolism, because results would be more reflective of drug toxicology and metabolism in vivo than current 2D cell culture methods are. [10]

Related Research Articles

<i>In vitro</i> Latin term meaning outside a natural biological environment

In vitro studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology and its subdisciplines are traditionally done in labware such as test tubes, flasks, Petri dishes, and microtiter plates. Studies conducted using components of an organism that have been isolated from their usual biological surroundings permit a more detailed or more convenient analysis than can be done with whole organisms; however, results obtained from in vitro experiments may not fully or accurately predict the effects on a whole organism. In contrast to in vitro experiments, in vivo studies are those conducted in living organisms, including humans, known as clinical trials, and whole plants.

<span class="mw-page-title-main">Stem cell</span> Undifferentiated biological cells that can differentiate into specialized cells

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

<span class="mw-page-title-main">Tissue engineering</span> Biomedical engineering discipline

Tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biological tissues. Tissue engineering often involves the use of cells placed on tissue scaffolds in the formation of new viable tissue for a medical purpose, but is not limited to applications involving cells and tissue scaffolds. While it was once categorized as a sub-field of biomaterials, having grown in scope and importance, it can is considered as a field of its own.

<span class="mw-page-title-main">Hepatocyte</span> Liver cell type

A hepatocyte is a cell of the main parenchymal tissue of the liver. Hepatocytes make up 80% of the liver's mass. These cells are involved in:

<span class="mw-page-title-main">Glucokinase</span> Enzyme participating to the regulation of carbohydrate metabolism

Glucokinase is an enzyme that facilitates phosphorylation of glucose to glucose-6-phosphate. Glucokinase occurs in cells in the liver and pancreas of humans and most other vertebrates. In each of these organs it plays an important role in the regulation of carbohydrate metabolism by acting as a glucose sensor, triggering shifts in metabolism or cell function in response to rising or falling levels of glucose, such as occur after a meal or when fasting. Mutations of the gene for this enzyme can cause unusual forms of diabetes or hypoglycemia.

<span class="mw-page-title-main">Hep G2</span>

Hep G2 is a human liver cancer cell line.

<span class="mw-page-title-main">Nanorobotics</span> Emerging technology field

Nanoid robotics, or for short, nanorobotics or nanobotics, is an emerging technology field creating machines or robots, which are called nanorobots or simply nanobots, whose components are at or near the scale of a nanometer. More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots with devices ranging in size from 0.1 to 10 micrometres and constructed of nanoscale or molecular components. The terms nanobot, nanoid, nanite, nanomachine and nanomite have also been used to describe such devices currently under research and development.

<span class="mw-page-title-main">Embryonic stem cell</span> Type of pluripotent blastocystic stem cell

Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist of 50–150 cells. Isolating the inner cell mass (embryoblast) using immunosurgery results in destruction of the blastocyst, a process which raises ethical issues, including whether or not embryos at the pre-implantation stage have the same moral considerations as embryos in the post-implantation stage of development.

<span class="mw-page-title-main">Cell culture</span> Process by which cells are grown under controlled conditions

Cell culture or tissue culture is the process by which cells are grown under controlled conditions, generally outside of their natural environment. After cells of interest have been isolated from living tissue, they can subsequently be maintained under carefully controlled conditions. They need to be kept at body temperature (37 °C) in an incubator. These conditions vary for each cell type, but generally consist of a suitable vessel with a substrate or rich medium that supplies the essential nutrients (amino acids, carbohydrates, vitamins, minerals), growth factors, hormones, and gases (CO2, O2), and regulates the physio-chemical environment (pH buffer, osmotic pressure, temperature). Most cells require a surface or an artificial substrate to form an adherent culture as a monolayer (one single-cell thick), whereas others can be grown free floating in a medium as a suspension culture. This is typically facilitated via use of a liquid, semi-solid, or solid growth medium, such as broth or agar. Tissue culture commonly refers to the culture of animal cells and tissues, with the more specific term plant tissue culture being used for plants. The lifespan of most cells is genetically determined, but some cell-culturing cells have been 'transformed' into immortal cells which will reproduce indefinitely if the optimal conditions are provided.

Targeted drug delivery, sometimes called smart drug delivery, is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. This means of delivery is largely founded on nanomedicine, which plans to employ nanoparticle-mediated drug delivery in order to combat the downfalls of conventional drug delivery. These nanoparticles would be loaded with drugs and targeted to specific parts of the body where there is solely diseased tissue, thereby avoiding interaction with healthy tissue. The goal of a targeted drug delivery system is to prolong, localize, target and have a protected drug interaction with the diseased tissue. The conventional drug delivery system is the absorption of the drug across a biological membrane, whereas the targeted release system releases the drug in a dosage form. The advantages to the targeted release system is the reduction in the frequency of the dosages taken by the patient, having a more uniform effect of the drug, reduction of drug side-effects, and reduced fluctuation in circulating drug levels. The disadvantage of the system is high cost, which makes productivity more difficult, and the reduced ability to adjust the dosages.

<span class="mw-page-title-main">HNF1A</span> Protein-coding gene in the species Homo sapiens

HNF1 homeobox A, also known as HNF1A, is a human gene on chromosome 12. It is ubiquitously expressed in many tissues and cell types. The protein encoded by this gene is a transcription factor that is highly expressed in the liver and is involved in the regulation of the expression of several liver-specific genes. Mutations in the HNF1A gene have been known to cause diabetes. The HNF1A gene also contains a SNP associated with increased risk of coronary artery disease.

Integrated discrete Multiple Organ Culture (IdMOC) is an in vitro, cell culture based experimental model for the study of intercellular communication. In conventional in vitro systems, each cell type is studied in isolation ignoring critical interactions between organs or cell types. IdMOC technology is based on the concept that multiple organs signal or communicate via the systemic circulation (i.e., blood).

<span class="mw-page-title-main">Immortalised cell line</span> Lineage of cells that evades senescence and continues dividing

An immortalised cell line is a population of cells from a multicellular organism which would normally not proliferate indefinitely but, due to mutation, have evaded normal cellular senescence and instead can keep undergoing division. The cells can therefore be grown for prolonged periods in vitro. The mutations required for immortality can occur naturally or be intentionally induced for experimental purposes. Immortal cell lines are a very important tool for research into the biochemistry and cell biology of multicellular organisms. Immortalised cell lines have also found uses in biotechnology.

An organ-on-a-chip (OOC) is a multi-channel 3-D microfluidic cell culture, integrated circuit (chip) that simulates the activities, mechanics and physiological response of an entire organ or an organ system. It constitutes the subject matter of significant biomedical engineering research, more precisely in bio-MEMS. The convergence of labs-on-chips (LOCs) and cell biology has permitted the study of human physiology in an organ-specific context. By acting as a more sophisticated in vitro approximation of complex tissues than standard cell culture, they provide the potential as an alternative to animal models for drug development and toxin testing.

A 3D cell culture is an artificially created environment in which biological cells are permitted to grow or interact with their surroundings in all three dimensions. Unlike 2D environments, a 3D cell culture allows cells in vitro to grow in all directions, similar to how they would in vivo. These three-dimensional cultures are usually grown in bioreactors, small capsules in which the cells can grow into spheroids, or 3D cell colonies. Approximately 300 spheroids are usually cultured per bioreactor.

Magnetic 3D bio printing is a methodology that employs biocompatible magnetic nanoparticles to print cells into 3D structures or 3D cell cultures. In this process, cells are tagged with magnetic nanoparticles that are used to render them magnetic. Once magnetic, these cells can be rapidly printed into specific 3D patterns using external magnetic forces that mimic tissue structure and function.

Liver regeneration is the process by which the liver is able to replace lost liver tissue. The liver is the only visceral organ with the capacity to regenerate. The liver can regenerate after partial surgical removal or chemical injury. As little as 51% of the original liver mass is required for the organ to regenerate back to full size. The process of regeneration in mammals is mainly compensatory growth because while the lost mass of the liver is replaced, it does not regain its original shape. During compensatory hyperplasia, the remaining liver tissue becomes larger so that the organ can continue to function. In lower species such as fish, the liver can regain both its original size and mass.

Albert P. Li is president and CEO of In Vitro ADMET Laboratories (IVAL), Columbia, Maryland, and Malden, Massachusetts. For the past three decades, Li has devoted his scientific career to the advancement of scientific concepts and technologies to accurately predict human drug properties. His research is focused on the development and application of human-based in vitro experimental systems in drug discovery and development. He is a pioneer in the isolation, cryopreservation, and culturing of human hepatocytes and their application in the evaluation of drug metabolism, drug-drug interactions, and drug toxicity.

<span class="mw-page-title-main">Uwe Marx</span>

Uwe Marx is a German physician and biotechnologist, and one of the world’s leading researchers in the fields of organ-on-a-chip technology and antibody production.

<span class="mw-page-title-main">HepaRG</span> Hepatic cell line model

HepaRG cell line is a human hepatic in vitro line used in liver biology research and for assessing liver pathology, hepatotoxicity, and drug-induced injury. The HepaRG model is considered a surrogate for Primary Human Hepatocytes, which are the most pertinent model to reproduce the human liver functioning as they express 99% of the same genes.

References

  1. 1 2 3 "MC2 Therapeutics - Scandinavian Life Sciences Database". www.scandinavianlifesciences.com. Retrieved 22 November 2022.
  2. "MC2 Biotek ApS: Private Company Information - Bloomberg". investing.businessweek.com. Archived from the original on 3 December 2013.
  3. "Drugmode ApS - Hørsholm - Se Regnskaber, Roller og mere". Archived from the original on 3 December 2013. Retrieved 25 November 2013.
  4. "Zadec ApS - Hørsholm - Se Regnskaber, Roller og mere". www.proff.dk.
  5. "Drug Delivery Solutions ApS - Hørsholm - Se Regnskaber, Roller og mere". www.proff.dk.
  6. Wheeler, D. A., Steele, D. F. (2008). WO2009001099. Great Britain. World Intellectual Property Organization
  7. 1 2 3 4 Childs, A., Alfred, D. (2011). EP171804 B1. Great Britain. European Patent Register
  8. "Khoisan tea" (PDF). sod-jpn.org. Retrieved 27 March 2024.
  9. Fey, S. J. (2012). EP2606116. International. European Patent Register
  10. Determination of Drug Toxicity Using 3D Spheroids Constructed From an Immortal Human Hepatocyte Cell Line. Fey, Stephen J (06/2012). "Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line". Toxicological sciences (1096-6080), 127 (2), p. 403. PMID   22454432 DOI: 10.1093/toxsci/kfs122