MIoTy

Last updated

mioty is a low-power wide-area network (LPWAN) protocol. It is using telegram splitting, a standardized LPWAN technology in the license-free spectrum. This technology splits a data telegram into multiple sub packets and sends them after applying error correcting codes, in a partly predefined time and frequency pattern. This makes a transmission robust to interferences and packet collisions. [1] It is standardised in the TS 103 357 ETSI. [2] Its uplink operates at the 868 MHz band, license free in Europe, and 916MHz band in North America. It requires a bandwidth of 200 kHz for two channels (e.g. up- and downlink). [3]

Contents


Technology attributes

Applications

It is intended to be used for monitoring devices in large areas. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Digital enhanced cordless telecommunications</span> ITU Standard for cordless telephone systems

Digital enhanced cordless telecommunications , usually known by the acronym DECT, is a standard primarily used for creating cordless telephone systems. It originated in Europe, where it is the common standard, replacing earlier cordless phone standards, such as 900 MHz CT1 and CT2.

<span class="mw-page-title-main">GSM</span> Cellular telephone network standard

The Global System for Mobile Communications (GSM) is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. GSM is also a trade mark owned by the GSM Association. GSM may also refer to the Full Rate voice codec.

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunication Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code-division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

<span class="mw-page-title-main">Single-frequency network</span>

A single-frequency network or SFN is a broadcast network where several transmitters simultaneously send the same signal over the same frequency channel.

<span class="mw-page-title-main">E-UTRA</span> 3GPP interface

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access, also referred to as the 3GPP work item on the Long Term Evolution (LTE) also known as the Evolved Universal Terrestrial Radio Access (E-UTRA) in early drafts of the 3GPP LTE specification. E-UTRAN is the initialism of Evolved UMTS Terrestrial Radio Access Network and is the combination of E-UTRA, user equipment (UE), and E-UTRAN Node B or Evolved Node B (eNodeB).

<span class="mw-page-title-main">LTE (telecommunication)</span> Standard for wireless broadband communication for mobile devices

In telecommunications, long-term evolution (LTE) is a standard for wireless broadband communication for mobile devices and data terminals, based on the GSM/EDGE and UMTS/HSPA standards. It improves on those standards' capacity and speed by using a different radio interface and core network improvements. LTE is the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. Because LTE frequencies and bands differ from country to country, only multi-band phones can use LTE in all countries where it is supported.

Bluetooth Low Energy is a wireless personal area network technology designed and marketed by the Bluetooth Special Interest Group aimed at novel applications in the healthcare, fitness, beacons, security, and home entertainment industries. It is independent of classic Bluetooth and has no compatibility, but Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR) and LE can coexist. The original specification was developed by Nokia in 2006 under the name Wibree, which was integrated into Bluetooth 4.0 in December 2009 as Bluetooth Low Energy.

<span class="mw-page-title-main">5G</span> Broadband cellular network standard

In telecommunications, 5G is the fifth-generation technology standard for broadband cellular networks, which cellular phone companies began deploying worldwide in 2019, and is the planned successor to the 4G networks which provide connectivity to most current cellphones. 5G networks are predicted to have more than 1.7 billion subscribers and account for 25% of the worldwide mobile technology market by 2025, according to the GSM Association and Statista.

Digital mobile radio (DMR) is a specification for commercial products so they can interoperate. It is defined by a standard created by the European Telecommunications Standards Institute (ETSI), and is designed to be low-cost and easy to use. DMR, along with P25 phase II and NXDN are the main competitor technologies in achieving 6.25 kHz equivalent bandwidth using the proprietary AMBE+2 vocoder. DMR and P25 II both use two-slot TDMA in a 12.5 kHz channel, while NXDN uses discrete 6.25 kHz channels using frequency division and TETRA uses a four-slot TDMA in a 25 kHz channel.

DASH7 Alliance Protocol (D7A) is an open-source wireless sensor and actuator network protocol, which operates in the 433 MHz, 868 MHz and 915 MHz unlicensed ISM band/SRD band. DASH7 provides multi-year battery life, range of up to 2 km, low latency for connecting with moving things, a very small open-source protocol stack, AES 128-bit shared-key encryption support, and data transfer of up to 167 kbit/s. The DASH7 Alliance Protocol is the name of the technology promoted by the non-profit consortium called the DASH7 Alliance.

<span class="mw-page-title-main">XBee</span> Motherboard

Digi XBee is the brand name of a popular family of form factor compatible wireless connectivity modules from Digi International. The first XBee modules were introduced under the MaxStream brand in 2005 and were based on the IEEE 802.15.4-2003 standard designed for point-to-point and star communications. Since the initial introduction, the XBee family has grown and a complete ecosystem of wireless modules, gateways, adapters and software has evolved.

<span class="mw-page-title-main">RF module</span>

An RF module is a (usually) small electronic device used to transmit and/or receive radio signals between two devices. In an embedded system it is often desirable to communicate with another device wirelessly. This wireless communication may be accomplished through optical communication or through radio-frequency (RF) communication. For many applications, the medium of choice is RF since it does not require line of sight. RF communications incorporate a transmitter and a receiver. They are of various types and ranges. Some can transmit up to 500 feet. RF modules are typically fabricated using RF CMOS technology.

Weightless was a set of low-power wide-area network (LPWAN) wireless technology specifications for exchanging data between a base station and thousands of machines around it.

A low-power wide-area network is a type of wireless telecommunication wide area network designed to allow long-range communications at a low bit rate among things, such as sensors operated on a battery. The low power, low bit rate, and intended use distinguish this type of network from a wireless WAN that is designed to connect users or businesses, and carry more data, using more power. The LPWAN data rate ranges from 0.3 kbit/s to 50 kbit/s per channel.

Narrowband Internet of things (NB-IoT) is a low-power wide-area network (LPWAN) radio technology standard developed by 3GPP for cellular devices and services. The specification was frozen in 3GPP Release 13, in June 2016. Other 3GPP IoT technologies include eMTC and EC-GSM-IoT.

<span class="mw-page-title-main">LoRa</span> Wireless communication technology

LoRa is a physical proprietary radio communication technique. It is based on spread spectrum modulation techniques derived from chirp spread spectrum (CSS) technology. It was developed by Cycleo, a company of Grenoble, France, later acquired by Semtech.

NB-Fi Protocol is an open LPWAN protocol, which operates in unlicensed ISM radio band. Using the NB-Fi Protocol in devices allows data transmission range of up to 10 km in dense urban conditions, and up to 30 km in rural areas with up to 10 years on battery power.

In communication engineering, Ultra NarrowBand (UNB) systems are those in which the channel has a very narrow bandwidth.

Wize technology is a low-power wide-area network technology using the 169 MHz radio frequency. It was created by the Wize Alliance in 2017. Derived from the European Standard Wireless M-Bus, it has mainly been used by utility companies for smart metering infrastructures (AMI) for gas, water and electricity but is equally open to other applications in industry and 'Smart City' spaces.

Static Context Header Compression(SCHC) is a standard compression and fragmentation mechanism defined in the IPv6 over LPWAN working group at the IETF. It offers compression and fragmentation of IPv6/UDP/CoAP packets to allow their transmission over the Low-Power Wide-Area Networks (LPWAN).

References

  1. "mioty technology". MIOTY Alliance e.V.
  2. "Technical specs" (PDF). www.etsi.org. Retrieved 2020-08-28.
  3. Nolan, Keith; Kelly, Mark (2018-04-28). "IPv6 Convergence for IoT Cyber–Physical Systems". Information. 9 (4): 70. doi: 10.3390/info9040070 .
  4. "StackPath".
  5. "Radiocrafts Releases the World's First Shielded Mioty Module for Massive IoT Deployments!". 2020-07-02.
  6. "Espacenet – search results".
  7. "Termindatenbank".
  8. "Radiocrafts Releases the World's First Shielded Mioty Module for Massive IoT Deployments!". 2020-07-02.
  9. "How data from smart buildings supports health and wellbeing -". 2020-11-30.
  10. "mioty® – The Wireless IoT Platform". Fraunhofer Institute for Integrated Circuits IIS.