Magnetohydrodynamic turbulence

Last updated

Magnetohydrodynamic turbulence concerns the chaotic regimes of magnetofluid flow at high Reynolds number. Magnetohydrodynamics (MHD) deals with what is a quasi-neutral fluid with very high conductivity. The fluid approximation implies that the focus is on macro length-and-time scales which are much larger than the collision length and collision time respectively.

Contents

Incompressible MHD equations

The incompressible MHD equations for constant mass density, , are

where

The third equation is the incompressibility condition. In the above equation, the magnetic field is in Alfvén units (same as velocity units).

The total magnetic field can be split into two parts: (mean + fluctuations).

The above equations in terms of Elsässer variables () are

where . Nonlinear interactions occur between the Alfvénic fluctuations .

The important nondimensional parameters for MHD are

The magnetic Prandtl number is an important property of the fluid. Liquid metals have small magnetic Prandtl numbers, for example, liquid sodium's is around . But plasmas have large .

The Reynolds number is the ratio of the nonlinear term of the Navier–Stokes equation to the viscous term. While the magnetic Reynolds number is the ratio of the nonlinear term and the diffusive term of the induction equation.

In many practical situations, the Reynolds number of the flow is quite large. For such flows typically the velocity and the magnetic fields are random. Such flows are called to exhibit MHD turbulence. Note that need not be large for MHD turbulence. plays an important role in dynamo (magnetic field generation) problem.

The mean magnetic field plays an important role in MHD turbulence, for example it can make the turbulence anisotropic; suppress the turbulence by decreasing energy cascade etc. The earlier MHD turbulence models assumed isotropy of turbulence, while the later models have studied anisotropic aspects. In the following discussions will summarize these models. More discussions on MHD turbulence can be found in Biskamp, [1] Verma. [2] and Galtier.

Isotropic models

Iroshnikov [3] and Kraichnan [4] formulated the first phenomenological theory of MHD turbulence. They argued that in the presence of a strong mean magnetic field, and wavepackets travel in opposite directions with the phase velocity of , and interact weakly. The relevant time scale is Alfven time . As a results the energy spectra is

where is the energy cascade rate.

Later Dobrowolny et al. [5] derived the following generalized formulas for the cascade rates of variables:

where are the interaction time scales of variables.

Iroshnikov and Kraichnan's phenomenology follows once we choose .

Marsch [6] chose the nonlinear time scale as the interaction time scale for the eddies and derived Kolmogorov-like energy spectrum for the Elsasser variables:

where and are the energy cascade rates of and respectively, and are constants.

Matthaeus and Zhou [7] attempted to combine the above two time scales by postulating the interaction time to be the harmonic mean of Alfven time and nonlinear time.

The main difference between the two competing phenomenologies (−3/2 and −5/3) is the chosen time scales for the interaction time. The main underlying assumption in that Iroshnikov and Kraichnan's phenomenology should work for strong mean magnetic field, whereas Marsh's phenomenology should work when the fluctuations dominate the mean magnetic field (strong turbulence).

However, as we will discuss below, the solar wind observations and numerical simulations tend to favour −5/3 energy spectrum even when the mean magnetic field is stronger compared to the fluctuations. This issue was resolved by Verma [8] using renormalization group analysis by showing that the Alfvénic fluctuations are affected by scale-dependent "local mean magnetic field". The local mean magnetic field scales as , substitution of which in Dobrowolny's equation yields Kolmogorov's energy spectrum for MHD turbulence.

Renormalization group analysis have been also performed for computing the renormalized viscosity and resistivity. It was shown that these diffusive quantities scale as that again yields energy spectra consistent with Kolmogorov-like model for MHD turbulence. The above renormalization group calculation has been performed for both zero and nonzero cross helicity.

The above phenomenologies assume isotropic turbulence that is not the case in the presence of a mean magnetic field. The mean magnetic field typically suppresses the energy cascade along the direction of the mean magnetic field. [9]

Anisotropic models

Mean magnetic field makes turbulence anisotropic. This aspect has been studied in last two decades. In the limit , Galtier et al. [10] showed using kinetic equations that

where and are components of the wavenumber parallel and perpendicular to mean magnetic field. The above limit is called the weak turbulence limit.

Under the strong turbulence limit, , Goldereich and Sridhar [11] argue that ("critical balanced state") which implies that

The above anisotropic turbulence phenomenology has been extended for large cross helicity MHD.

Solar wind observations

Solar wind plasma is in a turbulent state. Researchers have calculated the energy spectra of the solar wind plasma from the data collected from the spacecraft. The kinetic and magnetic energy spectra, as well as are closer to compared to , thus favoring Kolmogorov-like phenomenology for MHD turbulence. [12] [13] The interplanetary and interstellar electron density fluctuations also provide a window for investigating MHD turbulence.

Numerical simulations

The theoretical models discussed above are tested using the high resolution direct numerical simulation (DNS). Number of recent simulations report the spectral indices to be closer to 5/3. [14] There are others that report the spectral indices near 3/2. The regime of power law is typically less than a decade. Since 5/3 and 3/2 are quite close numerically, it is quite difficult to ascertain the validity of MHD turbulence models from the energy spectra.

Energy fluxes can be more reliable quantities to validate MHD turbulence models. When (high cross helicity fluid or imbalanced MHD) the energy flux predictions of Kraichnan and Iroshnikov model is very different from that of Kolmogorov-like model. It has been shown using DNS that the fluxes computed from the numerical simulations are in better agreement with Kolmogorov-like model compared to Kraichnan and Iroshnikov model. [15]

Anisotropic aspects of MHD turbulence have also been studied using numerical simulations. The predictions of Goldreich and Sridhar [11] () have been verified in many simulations.

Energy transfer

Energy transfer among various scales between the velocity and magnetic field is an important problem in MHD turbulence. These quantities have been computed both theoretically and numerically. [2] These calculations show a significant energy transfer from the large scale velocity field to the large scale magnetic field. Also, the cascade of magnetic energy is typically forward. These results have critical bearing on dynamo problem.


There are many open challenges in this field that hopefully will be resolved in near future with the help of numerical simulations, theoretical modelling, experiments, and observations (e.g., solar wind).

See also

Related Research Articles

<span class="mw-page-title-main">Magnetohydrodynamics</span> Model of electrically conducting fluids

Magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in numerous fields including geophysics, astrophysics, and engineering.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In physics, the screened Poisson equation is a Poisson equation, which arises in the Klein–Gordon equation, electric field screening in plasmas, and nonlocal granular fluidity in granular flow.

<span class="mw-page-title-main">Dynamo theory</span> Mechanism by which a celestial body generates a magnetic field

In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.

Quantum turbulence is the name given to the turbulent flow – the chaotic motion of a fluid at high flow rates – of quantum fluids, such as superfluids. The idea that a form of turbulence might be possible in a superfluid via the quantized vortex lines was first suggested by Richard Feynman. The dynamics of quantum fluids are governed by quantum mechanics, rather than classical physics which govern classical (ordinary) fluids. Some examples of quantum fluids include superfluid helium, Bose–Einstein condensates (BECs), polariton condensates, and nuclear pasta theorized to exist inside neutron stars. Quantum fluids exist at temperatures below the critical temperature at which Bose-Einstein condensation takes place.

In plasma physics, magnetic helicity is a measure of the linkage, twist, and writhe of a magnetic field.

In physics, magnetosonic waves, also known as magnetoacoustic waves, are low-frequency compressive waves driven by mutual interaction between an electrically conducting fluid and a magnetic field. They are associated with compression and rarefaction of both the fluid and the magnetic field, as well as with an effective tension that acts to straighten bent magnetic field lines. The properties of magnetosonic waves are highly dependent on the angle between the wavevector and the equilibrium magnetic field and on the relative importance of fluid and magnetic processes in the medium. They only propagate with frequencies much smaller than the ion cyclotron or ion plasma frequencies of the medium, and they are nondispersive at small amplitudes.

The Vlasov equation is a differential equation describing time evolution of the distribution function of plasma consisting of charged particles with long-range interaction, such as the Coulomb interaction. The equation was first suggested for the description of plasma by Anatoly Vlasov in 1938 and later discussed by him in detail in a monograph.

The Grad–Shafranov equation is the equilibrium equation in ideal magnetohydrodynamics (MHD) for a two dimensional plasma, for example the axisymmetric toroidal plasma in a tokamak. This equation takes the same form as the Hicks equation from fluid dynamics. This equation is a two-dimensional, nonlinear, elliptic partial differential equation obtained from the reduction of the ideal MHD equations to two dimensions, often for the case of toroidal axisymmetry. Taking as the cylindrical coordinates, the flux function is governed by the equation,

In magnetohydrodynamics, the magnetic Reynolds number (Rm) is a dimensionless quantity that estimates the relative effects of advection or induction of a magnetic field by the motion of a conducting medium to the magnetic diffusion. It is the magnetic analogue of the Reynolds number in fluid mechanics and is typically defined by:

<span class="mw-page-title-main">Magnetic pressure</span> Energy density associated with a magnetic field

In physics, magnetic pressure is an energy density associated with a magnetic field. In SI units, the energy density of a magnetic field with strength can be expressed as

In plasma physics, the Hasegawa–Mima equation, named after Akira Hasegawa and Kunioki Mima, is an equation that describes a certain regime of plasma, where the time scales are very fast, and the distance scale in the direction of the magnetic field is long. In particular the equation is useful for describing turbulence in some tokamaks. The equation was introduced in Hasegawa and Mima's paper submitted in 1977 to Physics of Fluids, where they compared it to the results of the ATC tokamak.

In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.

The Chandrasekhar number is a dimensionless quantity used in magnetic convection to represent ratio of the Lorentz force to the viscosity. It is named after the Indian astrophysicist Subrahmanyan Chandrasekhar.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

The distortion free energy density is a quantity that describes the increase in the free energy density of a liquid crystal caused by distortions from its uniformly aligned configuration. It also commonly goes by the name Frank free energy density named after Frederick Charles Frank.

In ideal magnetohydrodynamics, Alfvén's theorem, or the frozen-in flux theorem, states that electrically conducting fluids and embedded magnetic fields are constrained to move together in the limit of large magnetic Reynolds numbers. It is named after Hannes Alfvén, who put the idea forward in 1943.

Chandrasekhar–Kendall functions are the eigenfunctions of the curl operator derived by Subrahmanyan Chandrasekhar and P. C. Kendall in 1957 while attempting to solve the force-free magnetic fields. The functions were independently derived by both, and the two decided to publish their findings in the same paper.

In plasma physics and magnetic confinement fusion, neoclassical transport or neoclassical diffusion is a theoretical description of collisional transport in toroidal plasmas, usually found in tokamaks or stellerators. It is a modification of classical diffusion adding in effects of non-uniform magnetic fields due to the toroidal geometry, which give rise to new diffusion effects.

References

  1. D. Biskamp (2003), Magnetohydrodynamical Turbulence, (Cambridge University Press, Cambridge.)
  2. 1 2 Verma, Mahendra K. (2004). "Statistical theory of magnetohydrodynamic turbulence: recent results". Physics Reports. 401 (5–6): 229–380. arXiv: nlin/0404043 . Bibcode:2004PhR...401..229V. doi:10.1016/j.physrep.2004.07.007. ISSN   0370-1573. S2CID   119352240.
  3. P. S. Iroshnikov (1964), Turbulence of a Conducting Fluid in a Strong Magnetic Field, Soviet Astronomy, 7, 566.
  4. Kraichnan, Robert H. (1965). "Inertial-Range Spectrum of Hydromagnetic Turbulence". Physics of Fluids. 8 (7). AIP Publishing: 1385. Bibcode:1965PhFl....8.1385K. doi:10.1063/1.1761412. ISSN   0031-9171.
  5. Dobrowolny, M.; Mangeney, A.; Veltri, P. (1980-07-14). "Fully Developed Anisotropic Hydromagnetic Turbulence in Interplanetary Space". Physical Review Letters. 45 (2). American Physical Society (APS): 144–147. Bibcode:1980PhRvL..45..144D. doi:10.1103/physrevlett.45.144. ISSN   0031-9007.
  6. E. Marsch (1990), Turbulence in the solar wind, in: G. Klare (Ed.), Reviews in Modern Astronomy, Springer, Berlin, p. 43.
  7. Matthaeus, William H.; Zhou, Ye (1989). "Extended inertial range phenomenology of magnetohydrodynamic turbulence". Physics of Fluids B: Plasma Physics. 1 (9). AIP Publishing: 1929–1931. Bibcode:1989PhFlB...1.1929M. doi:10.1063/1.859110. ISSN   0899-8221.
  8. Verma, Mahendra K. (1999). "Mean magnetic field renormalization and Kolmogorov's energy spectrum in magnetohydrodynamic turbulence". Physics of Plasmas. 6 (5). AIP Publishing: 1455–1460. arXiv: chao-dyn/9803021 . Bibcode:1999PhPl....6.1455V. doi:10.1063/1.873397. ISSN   1070-664X. S2CID   2218981.
  9. Shebalin, John V.; Matthaeus, William H.; Montgomery, David (1983). "Anisotropy in MHD turbulence due to a mean magnetic field". Journal of Plasma Physics. 29 (3). Cambridge University Press (CUP): 525–547. Bibcode:1983JPlPh..29..525S. doi:10.1017/s0022377800000933. hdl: 2060/19830004728 . ISSN   0022-3778. S2CID   122509800.
  10. Galtier, S.; Nazarenko, S. V.; Newell, A. C.; Pouquet, A. (2000). "A weak turbulence theory for incompressible magnetohydrodynamics" (PDF). Journal of Plasma Physics. 63 (5). Cambridge University Press (CUP): 447–488. arXiv: astro-ph/0008148 . Bibcode:2000JPlPh..63..447G. doi:10.1017/s0022377899008284. ISSN   0022-3778. S2CID   15528846.
  11. 1 2 Goldreich, P.; Sridhar, S. (1995). "Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence" (PDF). The Astrophysical Journal. 438. IOP Publishing: 763. Bibcode:1995ApJ...438..763G. doi:10.1086/175121. ISSN   0004-637X.
  12. Matthaeus, William H.; Goldstein, Melvyn L. (1982). "Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind". Journal of Geophysical Research. 87 (A8). American Geophysical Union (AGU): 6011. Bibcode:1982JGR....87.6011M. doi:10.1029/ja087ia08p06011. hdl: 11603/30515 . ISSN   0148-0227.
  13. D. A. Roberts, M. L. Goldstein (1991), Turbulence and waves in the solar wind, Rev. Geophys., 29, 932.
  14. Müller, Wolf-Christian; Biskamp, Dieter (2000-01-17). "Scaling Properties of Three-Dimensional Magnetohydrodynamic Turbulence". Physical Review Letters. 84 (3). American Physical Society (APS): 475–478. arXiv: physics/9906003 . Bibcode:2000PhRvL..84..475M. doi:10.1103/physrevlett.84.475. ISSN   0031-9007. PMID   11015942. S2CID   43131956.
  15. Verma, M. K.; Roberts, D. A.; Goldstein, M. L.; Ghosh, S.; Stribling, W. T. (1996-10-01). "A numerical study of the nonlinear cascade of energy in magnetohydrodynamic turbulence". Journal of Geophysical Research: Space Physics. 101 (A10). American Geophysical Union (AGU): 21619–21625. Bibcode:1996JGR...10121619V. doi:10.1029/96ja01773. hdl: 11603/30574 . ISSN   0148-0227.