Malter effect

Last updated

The Malter effect is named after Louis Malter, who first described the effect. Following exposure to ionizing radiation (e.g., electrons, ions, X-rays, extreme ultraviolet, vacuum ultraviolet), secondary electron emission from the surface of a thin insulating layer results in the establishment of a positive charge on the surface. This positive charge produces a high electric field in the insulator, resulting in the emission of electrons through the surface. This tends to pull more electrons from further beneath the surface. Eventually the sample replenishes the lost electrons, by picking up the collected secondary electrons through the ground loop. [1] [2]

The Malter effect [3] [4] [5] often arises in wire chambers (aka drift chambers). After six years of operation, the BES III science team reported on a serious problem caused by the effect and how they coped with the problem. [6]

For cathode aging, a polymer formation deposits on the cathode surfaces. This insulating layer prevents the neutralization of positive ions, leading to the formation of a surface charge. The charge induces a high electric field which can be enhanced enough to extract electrons from the cathode. Most of them recombine with positive ions immediately, but some of them drift to the anode and generate avalanches at the sense wire. The avalanche positive ions come back to the cathode, enhance the electric field of the insulating layer, and thus feed a continuous, self-sustaining local discharge in the chamber without external irradiation. This effect is called the Malter effect ... [6]

Related Research Articles

Electric current Flow of electric charge

An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving particles are called charge carriers, which may be one of several types of particles, depending on the conductor. In electric circuits the charge carriers are often electrons moving through a wire. In semiconductors they can be electrons or holes. In an electrolyte the charge carriers are ions, while in plasma, an ionized gas, they are ions and electrons.

Cathode An electrode where reduction take place

A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic CCD for Cathode Current Departs. A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit.

Diode Electronic component that only allows current to flow in one direction

A diode is a two-terminal electronic component that conducts current primarily in one direction ; it has low resistance in one direction, and high resistance in the other.

Electrical phenomena are commonplace and unusual events that can be observed and that illuminate the principles of the physics of electricity and are explained by them. Electrical phenomena are a somewhat arbitrary division of electromagnetic phenomena.

Geiger–Müller tube

The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.

Cold cathode Type of electrode and part of cold cathode fluorescent lamp.

A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.

Photomultiplier tube Fast, high sensitivty, low noise electronic photon detector

Photomultiplier tubes (photomultipliers or PMTs for short), members of the class of vacuum tubes, and more specifically vacuum phototubes, are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. These detectors multiply the current produced by incident light by as much as 100 million times or 108 (i.e., 160 dB), in multiple dynode stages, enabling (for example) individual photons to be detected when the incident flux of light is low.

Space charge is an interpretation of a collection of electric charges in which excess electric charge is treated as a continuum of charge distributed over a region of space rather than distinct point-like charges. This model typically applies when charge carriers have been emitted from some region of a solid—the cloud of emitted carriers can form a space charge region if they are sufficiently spread out, or the charged atoms or molecules left behind in the solid can form a space charge region.

Corona discharge Electrical discharge from a high voltage conductor

A corona discharge is an electrical discharge caused by the ionization of a fluid such as air surrounding a conductor carrying a high voltage. It represents a local region where the air has undergone electrical breakdown and become conductive, allowing charge to continuously leak off the conductor into the air. A corona discharge occurs at locations where the strength of the electric field around a conductor exceeds the dielectric strength of the air. It is often seen as a bluish glow in the air adjacent to pointed metal conductors carrying high voltages, and emits light by the same mechanism as a gas discharge lamp.

Glow discharge

A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the striking voltage, the gas ionization becomes self-sustaining, and the tube glows with a colored light. The color depends on the gas used.

Proportional counter

The proportional counter is a type of gaseous ionization detector device used to measure particles of ionizing radiation. The key feature is its ability to measure the energy of incident radiation, by producing a detector output pulse that is proportional to the radiation energy absorbed by the detector due to an ionizing event; hence the detector's name. It is widely used where energy levels of incident radiation must be known, such as in the discrimination between alpha and beta particles, or accurate measurement of X-ray radiation dose.

A wire chamber or multi-wire proportional chamber is a type of proportional counter that detects charged particles and photons and can give positional information on their trajectory, by tracking the trails of gaseous ionization.

The ionization chamber is the simplest type of gas-filled radiation detector, and is widely used for the detection and measurement of certain types of ionizing radiation, including X-rays, gamma rays, and beta particles. Conventionally, the term "ionization chamber" refers exclusively to those detectors which collect all the charges created by direct ionization within the gas through the application of an electric field. It only uses the discrete charges created by each interaction between the incident radiation and the gas. Gaseous ionization detectors include ionization chambers and devices that use gas multiplication, namely the proportional counter and the Geiger counter.

Gaseous ionization detector Radiation detector

Gaseous ionization detectors are radiation detection instruments used in particle physics to detect the presence of ionizing particles, and in radiation protection applications to measure ionizing radiation.

An electron avalanche is a process in which a number of free electrons in a transmission medium are subjected to strong acceleration by an electric field and subsequently collide with other atoms of the medium, thereby ionizing them. This releases additional electrons which accelerate and collide with further atoms, releasing more electrons—a chain reaction. In a gas, this causes the affected region to become an electrically conductive plasma.

Electrodynamic tether Long conducting wires which can act as electrical motors or generators

Electrodynamic tethers (EDTs) are long conducting wires, such as one deployed from a tether satellite, which can operate on electromagnetic principles as generators, by converting their kinetic energy to electrical energy, or as motors, converting electrical energy to kinetic energy. Electric potential is generated across a conductive tether by its motion through a planet's magnetic field.

Extreme ultraviolet Ultraviolet light with a wavelength of 10–121nm

Extreme ultraviolet radiation or high-energy ultraviolet radiation is electromagnetic radiation in the part of the electromagnetic spectrum spanning wavelengths from 124 nm down to 10 nm, and therefore having photons with energies from 10 eV up to 124 eV. EUV is naturally generated by the solar corona and artificially by plasma, high harmonic generation sources and synchrotron light sources. Since UVC extends to 100 nm, there is some overlap in the terms.

Townsend discharge

The Townsend discharge or Townsend avalanche is a gas ionisation process where free electrons are accelerated by an electric field, collide with gas molecules, and consequently free additional electrons. Those electrons are in turn accelerated and free additional electrons. The result is an avalanche multiplication that permits electrical conduction through the gas. The discharge requires a source of free electrons and a significant electric field; without both, the phenomenon does not occur.

Plasma activation is a method of surface modification employing plasma processing, which improves surface adhesion properties of many materials including metals, glass, ceramics, a broad range of polymers and textiles and even natural materials such as wood and seeds. Plasma functionalization also refers to the introduction of functional groups on the surface of exposed materials. It is widely used in industrial processes to prepare surfaces for bonding, gluing, coating and painting. Plasma processing achieves this effect through a combination of reduction of metal oxides, ultra-fine surface cleaning from organic contaminants, modification of the surface topography and deposition of functional chemical groups. Importantly, the plasma activation can be performed at atmospheric pressure using air or typical industrial gases including hydrogen, nitrogen and oxygen. Thus, the surface functionalization is achieved without expensive vacuum equipment or wet chemistry, which positively affects its costs, safety and environmental impact. Fast processing speeds further facilitate numerous industrial applications.

A gas electron multiplier (GEM) is a type of gaseous ionization detector used in nuclear and particle physics and radiation detection.

References

  1. Peter W. Hawkes (1992). Advances in electronics and electron physics. Academic Press. pp. 34–. ISBN   978-0-12-014725-0 . Retrieved 10 March 2012.
  2. American Institute of Electrical Engineers; Institute of Electrical and Electronics Engineers (July 1980). Radio engineering and electronic physics. American Institute of Electrical Engineers. Retrieved 10 March 2012.
  3. Kolanoski, Hermann; Wermes, Norbert (30 June 2020). Particle Detectors: Fundamentals and Applications. Oxford University Press. p. 251. ISBN   978-0-19-189923-2.
  4. Ballentyne, D. W. G.; Lovett, D. R. (6 December 2012). "Malter Effect". A Dictionary of Named Effects and Laws in Chemistry, Physics and Mathematics (4th ed.). Springer. ISBN   9789401160285.
  5. Nappi, Eugenio; Sequinot, Jacques, eds. (10 August 2004). "Radiation Damage and Long Term Ageing in Gas Detectors by M. Titov". Innovative Detectors for Supercolliders, Proceedings of the 42nd Workshop of the Infn Eloisatron Project. World Scientific. pp. 199–226. ISBN   9789814483322. (See p. 202.)
  6. 1 2 Dong, M.Y.; Xiu, Q.L.; Wu, L.H.; Wu, Z.; Qin, Z.H.; Shen, P.; An, F.F.; Ju, X.D.; Liu, Y.; Zhu, K.; Ouyang, Q.; Chen, Y.B. (17 Aug 2015). "Aging effect in the BESIII drift chamber". Chinese Physics C. 40: 016001. arXiv: 1504.04681 . doi:10.1088/1674-1137/40/1/016001. S2CID   118327562.

Bibliography